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SECTION I 

INTRODUCTION 

The SCEPTRE Circuit Analysis Program has been developed and 

Improved over a period of years on a number of contracts led by the 

Air Force Weapons Laboratory. The users' information for the 1973 

version of this program is contained in two volumes, of which this is 

the second. 

Volume I contains basic Instructions for use of the program. 

Volume II Is Intended to give a fuller understanding of the SCEPTRE 

internal formulation so that the more sophisticated user may take full 

advantage of the program's capabilities and flexibility. This volume 

supercedes AFWL-TR-72-77 for use of SCEPTRE on S/360 equipment, and 

retains the information from AFWL-TR-72-77 pertinent to 7090/94 equip- 

ment. 

The 1973 version of SCEPTRE, implemented for S/360 use, contains 

six additions not available on previous versions. There are four new 

DC options, an AC analysis capability, and a convolution capability. 

This volume covers the mathematical formulations for all of the previous 

SCEPTRE features, plus five of the six new ones. The convolution feature 

Is covered entirely in Volume I. 

- 1 - 
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SECTION II 

FORMULATION AND THEORY 

2.1 INTRODUCTION 

Any automatic transient analysis program Is designed to relieve the user 
of the necessity of writing and programming the differential and algebraic 
equations that describe networks. PREDICT and other programs already perform 
this basic task, but the degree of flexibility permitted the user varies widely 
among programs. SCEPTRE, written as a successor to PREDICT, Incorporates 
many Improvements. 

This section presents the formulation and theory that serve as the basis 
for SCEPTRE. Therefore, the discussion Is mathematically oriented. Those 
features of SCEPTRE that are not mathematical are not Included here. For 
example, the extremely useful features of Rerun and Model Storage are not de- 
scribed. 

2.2 GENERAL SOLUTION 

SCEPTRE consists of three separate formulations that combine to produce 
the general solutions of a given network. One Is referred to as the DC pro- 
gram.  It has five options, discussed in subsection 2.4, Each will determine 
the network voltages that prevail before any time-varying forcing function is 
applied. This program does not treat time as an independent variable; Instead 
it holds time constant, and Iterates on selected voltages.  The output of a 
DC program may be obtained Independently, or it may be automatically used as 
the starting point for the transient or AC program. Thus, the output of the 
DC program effectively supplies the initial conditions for the system of dif- 
ferential equations that are solved by the transient or AC program. 

The second program is called the transient program.  This program uses 
time as an independent variable and solves systems of differential equations 
as functions of time. The output of this program represents the transient 
response of a given network. As implied above, the transient program may be 
used in conjunction with the DC program, or it may be used by itself if the 
Initial conditions of the network are known. 

The third program is called the AC program.  This program uses frequency 
as an independent variable and solves algebraic equations as a function of 
frequency. The output of this program represents the frequency response of a 
given network. The AC program may also be used in conjunction with the DC 
program or by Itself.  It is discussed in Section 2.5 

The general solution procedure described here concerns the definition of 
the terms, matrices and procedures that are common to all programs. Other 
parts of this volume will provide the detailed explanations and derivations. 

- 2 - 
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The first step In either program Is the construction of a tree      (Ref. 1) ac- 
cording to prescribed rules, which differ for the three programs.    This permits 
formation of a B matrix that effectively expresses link voltages In terms 
of tree brauch voltages and tree branch currents In terms of link currents. 
Figure 1 shows a composite B matrix that contains all possible element classi- 
fications and submatrlces.    This matrix Is derived In appendix B •    The element 
classifications are given In table I. 

Tree Branches 

Class 
i        4 

Class 
5 

Class 
6 

Class 
7 

Class   | 
Y      1 

Class 1 "14 B15 
B16 BI7 

Biy 1 

Class 2 B24 B25 B« B27 B2Y 

Class 3 1,34 B35 B36 B37 B3Y 

Class 8 "84 B85 B86 B87 B8Y 

Class 9 B94 B95 B96 B97 B9Y 

Class 0 B04 B05 V, B07 B0Y 

Class X BX4 BX5 BX6 ^7 BXY 1 

Figure  1.     Composite B Matrix in SCEPTRE 

* A tree is defined as any connected network subgraph that contains all nodes 
of the network but no complete loops.    All circuit elements that are members 
of the tree are termed tree branches.    All circuit elements excluded from the 
tree are termed links.    A "C" tree is defined in this report as one in which 
tree members are chosen in the preference order E, C, R and L.    All current 
sources  (J) must be excluded  from the "C" tree.    Therefore, these sources 
are links.    A cut set is defined as that group of elements that would isolate 
two groups of nodes when removed from a network. 

- 3 - 
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TABLE I 

ELEMENT CLASSIFICATIONS IN SCEPTRE 

CLASS ELEMENT 

1 Capacitor links 

2 Resistor links 

3 Inductor links 

4 Capacitor tree branches 

5 Resistor   :ree branches 

6 Inductor tree branches 

7 Voltage sources 

8 Independent current sources 

9 Primary current sources  (dependent on voltage across terminals). 
This class will appear only in the derivation of the initial conditions 
and AC programs. 

0 Secondary current sources  (dependent on other current sources).    This 
class will appear only in the derivation of the initial conditions 
program. 

Y Voltage sources that are dependent on resistor voltages.     This class 
will appear only in the derivation ol  the transient and AC programs. 

X Current sources that are dependent on resistor currents.     This class 
will appear only in the derivation of the transient and AC programs. 

D Voltage sources that are generated in adjoint calculations due to 
the presence of secondary current sources in the network. 

- 4 - 
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The following matrices and vectors may also be defined as a result of 
the element classification in table I: 

R.«    -    a diagonal matrix composed only of resistor links 

G22    "    R22 

R,,    -    a diagonal matrix composed r.nly of resistor tree branches 

G55    "    R55 
-1 

C.. - a diagonal matrix composed only of capacitor links 

Sll " Cll 
-1 

C,, - a diagonal matrix composed only of capacitor tree branches 

'44 '44 

L.- - A matrix composed only of inductor links and the mutual 
inductance between inductor links 

L_, - a matrix composed only of the mutual inductance between 
inductor links and inductor branches 

L,, - a matrix composed only of inductor tree branches and the 
mutual inductance between inductor tree branches 

G-Q - a diagonal matrix composed only of the voltage derivatives 
of priis^ry current sources 

I1, V1  - vectors composed only of the currents or voltages aaau- 
ciated with capacitor links 

I„, V„ - vectors composed only of the currents or voltages asso- 
ciated with resistor links 

I., V_ - vectors composed only of the currents or voltages asso- 
ciated with inductor links 

I., V.  - vectors composed only of the currents or voltages asso- 
ciated with capacitor tree branches 

I_, V_ - vectors composed only of the currents or voltages asso- 
ciated with resistor tree branches 

- 5 - 
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I,, V      -    Vectors composed only of the currents or voltages asso- 
ciated with Inductor tree branches 

JL, V-    -    vectors composed only of the currents or voltages asso- 
ciated with independent current sources 

J-, V-    -    vectors composed only of the currents or voltages asso- 
ciated with primary current sources 

J0, V-    -    vectors composed only of the currents or voltages asso- 
ciated with secondary current sources 

E_    -      A vector composed only of voltage sources 

2.3    TRANSIENT SOLUTION 

2.3.1    MATRIX OPERATIONS 

The state variables of any system can be defined as the minimum set of 
quantities that will suffice to determine all other quantities in the system 
at any instant.    It can be shown that the    knowledge of the set of all capaci- 
tor tree branch voltage (V.) and Inductor tree link currents (I-)  Is sufficient 
to determine all other element currents and voltages    and, furthermore, that 
this selection of state variables will allow network formulation in terms of 
first-order differential equations.    The starting point of the derivation than 
is that quantities V. and I. are known and the list of unknowns Is made up of 
V., V2, V  , V , V , 1 , I,, I., I5,  I6, I7 and Vg.    In addition, the deriva- 
tives of ehe state variables, V.  and I., must be obtained in preparation for 
the numerical integration routine which produces the updated state variables 
that are valid at the next time increment. 

Some of the equations needed to solve the unknown quantities may be ob- 
tained from the transient solution B matrix (figure 2).    The B matrix Itself 
arises from a "C" tree, which is formed by an E, C, R, L preference order. 
Note that the B matrix differs fgom the composite matrix of figure 1 In that 
some submatrlces are zero valued      and that no distinction is made between 
types of sources. 

For example, B.. must be zero since the "C" tree preference prohibits the 
possibility of a capacitor link closing a loop that contains a resistor tree 
branch. 

- 6 - 
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Tree Branches 

Links 

1 

Class  { 
4      | 

Class  1 
5      | 

Class 
6 

1 

Class 1 
7      | 

Closs 1    1 B14 
0     1 0 B17   1 

Class 2 B24 B25 
0 B27 

Class 3 B34 1    B35 
B

34 
B37 

Class 8 B84 B85 B86 B87 

Figure 2. Transient-Solution B Matrix in SCEPTRE 

form: 

V, « -B14V4-B17E7 

V2 « -B24
V4 " B25V5 " B27E7 

-B34V4 " B35V5 " B36V6 ' B37E7 

-B84VA " B85V5 ' B86V6 ' B87E7 

(1) 

(2) 

(3) 

(4) 

'8 
uo «^Htten in terms of link currents, there 

Since tree branch currents can be written in term 

arises: 

B25T h * B35T h + *K   J8 

h   m »36T h * B86T J8 

»17T 'l + B27T h + B32T '3 + B87T J8 

(5) 

(6) 

(7) 

(8) 

^r.  the superscript T Is used to indlcat. the transpose of a «atrix. 

- 7 - 
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Two additional equations may be obtained from differentiating Equations  (1) 
and (7) yielding: 

Vl    -    -B14VB17E7 
• T   * T    * 

h    m      B36    l3 + h6    J8 

(9) 

(10) 

Note that source derivations E. and Jfl have been Introduced In the last two 
equations*.     These equations,  together with a few fundamental relations, wJll 
be used to derive all of the network currents and voltages In terms of known 
quantities. 

2.3.1.1    Solution of Resistive Quantities 

The resistive quantities of Interest are I»,  I5, V  , and V.. 
fundamental voltage current relations for resistors permit: 

The 

V2    -    Vl 

Vs 

(11) 

(12) 

I. may be explicitly solved for by manipulation of equations  (2),   (6),   (11) 

and  (12)  to get 

V 'B24VA " B27E7 ' B25R55 
T       T 

B35 h + h5    J8 (13) 

where 

\ R22 + B25R55B25 
(14) 

The significance of equation  (13)  is that  the vector of resistor link currents 
has been solved in terms of all known quantities, since the right  side of the 
equation is composed entirely of state variables V.  and I., known sources E_ 
and JQ and known incidence submatrices.     Once 12 is known,  the vectors  I5, 
V»,  and V-  can be determined from Equations   (6),   (11),  and  (12),  respectively. 

See subsection 2.3.3 for a discussion on source derivatives, 

- 8 - 



jW^fJJJJI^lfiW'I^WTOPT*''*: .^"iimvi |i.^M ipf'T«nT*' T 

An alternate approach may sometimes be preferable. Equations (2), (6), 
(11), and (12) may also be manipulated to obtain 

V  - M"1 -B T.  .„ V5    nG    B25 "22 "24*4 G.JB^?, *B27E7| +8,/ I, + B^ Ja | T 
'35 '3 

T 
'85 "8 (15) 

where 

MG " G55 + B25 G22B25 (16) 

Equation (15) gives the vector of resistor tree branch voltages in terms of 
quantities that are all known. Then, V, 
tlon (2), yielding '2' 12 and I, can be solved by Equa- 

-    G22V2 (17) 

and 

G55V5 (18) 

respectively.    The two approaches differ in the size of the matrix to be in- 
verted.    The first approach requires the inversion of a matrix (JL)  containing 
the number of rows and columns equal to the number of class-2 elements in  Lhe 
network.    The second approach requires the inversion of a matrix  (M )  con- 
taining the number of rows and columns equal to the number of class-5 elements 
in the network.    Networks containing resistors that are all constant require 
only one matrix inversion.    There is no practical difference between the two 
approaches.     If,  however, the network contains at least one variable resistor, 
a matrix must be inverted at each solution  time increment.    Hundreds, or even 
thousands, of matrix Inversions are necessary and the size of the matrix be- 
comes of significant importance.    SCEPTRE will automatically determine which 
of the two approaches should be taken for each individual network. 

2.3.1.2    Solution of Capacitor Quantities 

The capacitor quantities that must be solved at each time step are 
I.,  I,, V1  and V  .    Vector V.   itself will have been updated by the integration 
routine and, hence, will be known.    The fundamental relationships for capaci- 
fm   permit 

hu\ 
Vl    "    hlh 

(19) 

(20) 

Equations (5), (9), (19), and (2) may be combined to obtain 

Ms     ~husu B24 I2 + B34 h + B84 J8 - B17E7 (21) 

where 

M  - S.. + B..S..B.. s     11   14 44 14 
(22) 

- 9 - 
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AC this point, vector I. has been Isolated In terms of all known quantities. 
There remains to obtain I,, V., and V^ from Equations (5), (1), and (19), 
respectively. 

2.3.1.3 Solution of Inductive Quantities 

The inductive quantities that must be solved at each time step are 
• 
I. V , Vfi, and 1^. Vector I» will have been updated at the start of each 
tIAe step and will be known. The fundamental relations for inductors permit 

v3  "  SaWe (23) 

v6  ■  hih + heh (24) 

Equations  (3),   (10),  (2"^), and  (24) may be combined to obtain 

-1 
h    '    "L    j "VA - B35V5 " B37E7 " 

where 

T T 
B36L66B86    "f L36B86 J8      (25) 

«L    "    L33 + L36B36T + B36L63 + B36L66B36T (26) 

Now I_  is written in terms of known quantities.     Following this, V.,  V    and 

aay be oi 

spectively. 

I, may be ontained from Equations  (10)  and  (23),   (10)and  (24), and   (7),  re- 

2.3.1.4    Solution of Voltage Source Currents and Current Source Voltages 

A complete list of possible outputs of a network would Include the 
current  through voltage sources and the voltage across current sources. 
These can be. obtained directly from Equations   (8)  and (4),  respectively, 
since the right sides of these equations are known at this stage of  the 
computational sequence.    These steps complete the formal derivation of all 
network currents and voltages. 

2.3.2    SCANNING PROCEDURE 

2.3.2.1    Ideal Operation (Submatrices B.,,  B ,,  and B»,    -    0) 

The series of matrix operations described in subsection 2.3.1 could 
very well be programmed as they are to produce the solution of the general 
transient analysis problem.    All of the matrix multiplication, addition,  etc. 
could be performed at each time step to generate the necessary currents and 
voltages.    However, a very significant improvement in computer running time 
could be achieved by a more efficient utilization of the information con- 
tained in the B matrix. 
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Various network voltages and currents could be re|d or "scanned" directly 
from the rows and columns of the B matrix respectively .    This can be put 
more precisely by 

and 

VL    -    -BVTB (27) 

ITB-    BTIL (28) 

where ITB,  II, VXB and VL represent the vectors of tree branch currents,  link 
currents,  tree branch voltages, and link voltages, respectively.    If the 
vectors and the B matrix are partitioned according to the form of figure 2, 
Equations  (27)  and (28) lead to the first six equations of subsection 2.3.1 
Quantities V. and I, are explicitly written in terms of known quantities of 
Equations   (2;  and  (6)  If submatrix B«, - 0.     Once the resistive quantities 
are determined, equation (5) presents I,   in terms of known quantities if sub- 
matrix B..,   "0.     In the same manner,  equation  (3)  presents V- in terms of 
known quantities if submatrix B., ■ 0.    Clearly, then, the condition "B,, , 
B»., B., - 0" permits solution of V-,  I-,  I., V , I,, and V-  directly by 
scanning, and without any matrix manipulation.    Quantities I», V.,  I-, Vß,  V, 
and I» con then be determined from the operations given or implied in tne 
non zero portions of Equations  (11),   (12),   (21),   (24),  (19), and  (25),  re- 
spectively.    Once all of these quantities are explicitly obtained  in terms of 
known quantities,  the equations are stored,  compiled, and executed at each 
time increment without recourse to repeated matrix manipulation. 

2.3.2.2    Operation When B,-    i*    0 

In most large networks,  submatrix B-,. does not equal zero.    When this 
happens,  quantities V„ and I,, cannot be "scanned" out and either Equation  (13) 
or  (15) must  be solved.    Both of these equations require the inversion of a 
matrix;   thus,   some matrix manipulation must be done.    To Illustrate the pro- 
cedure,  assume  that some hypothetical network has given rise to the B matrix 
shown in figure 3.    The network is  fairly typical in that B-, , B-, - 0, but 
B»,. i* 0.     The nature of submatrix B25  (outlined in figure 3}  is such that 
resistors R- and R- contribute no rows or columns, and the scanning process 
immediately yields 

V__    ■    E,  - V 0 and !„_    -    IT -     from which follow 
R3 1 C>Z RD Lil, 

^3    -     (El-VC2)/R3andVRD    "    Vu 

These quantities will be updated at each time step without matrix manipulation. 
The rest cf the resistive quantities in the network may be solved by the 

* AFWL-TR-65-101, Volume I 
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matrlx manipulation Implied In Equations (13) and (14). Once the resistive 
quantities are determined, the remaining network quantities may be scanned 
out and stored. The only repeated matrix manipulation required will be for 
the three resistor link currents (I » Io » I

D ^ that cannot be scanned be- 
cause B». ^ 0. 12   4 

Class 4 Class 5 I Class 7 

Class 2 

Class 3 

C1 C2 RA *. "c RD E. 

R1 1 0 1 0 0 0 -1 

«z 0 1 0 1 1 0 0 

R3 
0 1 0 0 0 0 -1 

R4 0 o 1   1 0 0 0 0 

L1 0 0 0 0 0 1 0 

L2 0 0 1 0 0 0 0 

Figure 3.    B Matrix from Hypothetical Network 

2.3.3    SEMI-AUTOMATIC SOURCE DERIVATIVES 

The need for source time (derivatives in transient analyses Is established 
In Equations  (9) and  (10)  where E, and j. are required.    In situations where 
non-zero source time derivatives ai? needed,  the user must supply them.    These 
situations are subsequently described. 

2.3.3.1    Voltage Source   Is Variable and B _ f4    0 

If Bj. +    0 and the voltage source is constant, SCEPTRE will auto- 
matically supply a zero derivative.    In the case where a non-zero derivative 
Is required and the user falls to supply it,  the run will be terminated with 
a diagnostic message.    The situation is best recognized by the presence of 
any circuit loop composed solely of capacitors and at least one variable 
voltage source. 
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2.3.3.2 Current Source Is Variable and B 86 *    0 

If Bg6 ^ 0 and the current source Is constant, SCEPTRE will auto- 
matically supply a zero derivative.    In the case where a non-zero derivative 
is required and the user fails to supply it, the run will be terminated with 
a diagnostic message.    The situation is best recognized by the presence of 
any circuit cut set composed solely of inductors and at least one variable 
current source. 

2.3.4    LINEARLY DEPENDENT SOURCES 

The ability of SCEPTRE to correctly process linearly dependent sources 
permits the user to define current and voltage sources that are linear func- 
tions of resistor currents and voltages.    This feature is expected to be most 
useful for, but not limited    to, applications involving families of small- 
signal transistor equivalent circuits such as shown in figure 4. 

These linearly dependent sources require special treatment because their 
magnitudes are direct  functions of quantities that are not state variables. 
Unless these sources are specifically processed, they will be updated at the 
nth time step according to the values of their independent variables at the 
(n - 1)  time step  (as they would be in PREDICT,  for example).    This results 
In a "computational delay", which can lead to large errors throughout the 
entire network. 

Linearly dependent sources are provided for in the general B matrix 
by the Y and X classification.    When these sources exist, SCEPTRE will set 
up the B matrix as shown In figure 5.    Under these circumstances.  Equations 
(2) and (6) can be extended to: 

V2    "    -B24V4 - B25V5 - B27E7 " V* 

l5    "    B25T ^ + B35T ^ + B85T J8 + Bx5T JX 

(29) 

(30) 

Since any resistor-voltage-dependent voltage source must depend on a resistor 
tree branch voltage or a resistor link voltage, there arises 

where: 

EY - k V + k V Kl V2  K2 5 
(31) 

k, is a matrix of constants containing the number of rows equal 
to the number of class-Y voltage sources and the number of columns 
equal to the number of non-scannable class-2 elements. 

k» is a matrix of constants «.ontalning the number of rows equal 
to the number of class-Y voltage sources and the number of columns 
equal to the number of non-scannable class-5 elements. 
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Figure A.    Low-Frequency h-Parameter Equivalent Circuit 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class | 

y    i 

Class 1 B.4 0 0 B|7 V 
Class 2 B24 B25 

0 B27 \ 

Class 3 B34 "35 B36 B37 \ 

Class 8 "84 "ffi B86 B87 V 
Class x Bx4 Bx5 

Bx6 Bx7 B 
xy 

Figure 5.    B Matrix with Linearly Dependent Sources 
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• EY la a vector composed of class-Y voltage sources. 

Also, since any resistor-current-dependent current source must depend on a 
resistor tree branch current or a resistor link current, there arises 

JX - k3 I2 + k4 I5 (32) 

where 

• k. Is a matrix of constants containing the number of rows equal 
to the number of class-X current sources and the number of 
columns equal to the number of non-scannable class-2 elements 

• k. Is a matrix of constants containing the number of rows equal 
to the number of class-X current sources and the number of columns 
equal to the number of non-scannable class-5 elements 

• JX is a vector composed of class-X current sources 

If Equations (31) and (32), together with V2 - R??I2 and I,. - GccVc are 
substituted into Equations (29) and (30) 

R22I2 + B25V5 + B2y klR22I2 + k2V5l " -B24V4 " B27E7 
(33) 

G55V5 - B25T h - Bx5T I¥2 + k4G55V5l '    ^ h + B85T J8      (34) 

The last two equations may be consolidated as 

(R22 + 82^22)   (B25 + B2yk2) 

(-B25T " Bx5T k3) (G55 " Bx5T k4G55) 5j 

"VA " B27E7 

T       T 
B35 h + B85 J8 

If the large matrix on the left side is called MRG, then 

LV5 J 

MRG -1 

r -B24V4 " B27E7 

T       T 
LB35 l3*h5    J8J 

and the resistive quantities I. and V. can be determined without computational 
delay. Note that since all four "k" matrices are constrained to be constant. 
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the linearly dependent source feature Itself will not require any more than 
one Inversion of MRG.    If any variable resistors are present In a network, 
MRG must, of course, be Inverted at each time step.    In addition, the extra 
row and column that was added to the B matrix of figure 2 by the linearly 
dependent sources will add terms to the equations used In the solution of 
capacltlve,  Inductive and some source quantities.     Specifically,  Equations 
(5),   (3),  (4) and  (8) become 

\   "    B14T h + B24T ^ + B34T ^ + B84T J8 + BxAT JX (5') 

V3 - -B34V4 " B35 V5 " B36 V6 " B37 E7 " B3y EY 

V8 " -B84V4 " B85 V5 " B86 V6 " B87 E7 " B8y EY 

h    '    B17T ^ + B27T ^ + B37T ^ + B87T J8 + Bx7T JX 

(3') 

(4') 

(8') 

and the new relations 

VX - -B .V. - B _V. - B _E- - B EY x4 4   x5 5   x7 7   xy 

IY - +B- T I. + B, T 1. + B0 
T JQ + B 

T JX 2y  2   3y  3   8y  8   xy 

(35) 

(36) 

now exist. 

A restriction must be placed on these sources based on the content of 
section 2.5. The B matrix of figure 5 transforms Equations (9) and (10) into! 

-B-. V. - B., E, - B.  EY 14 4   17 7   ly 

^6 '    B36T ^3 + B86T ^ Bx6T ix 

(9') 

(10') 

Now, additional time derivatives EY and JX are required whenever B.. or 
Bx6    '   0- 

iy 

Differentiation of Equations  (31) and  (32) would Involve quantities V_, 
V_,   I5, and 1_.    The formulation contains no provisions  for these quantities^ 
and there is no way the user could know them to supply them as input data. 
SCEPTRE will automatically check for   the existence of non-zero B..    or B , and 
terminate the run with a diagnostic message when they occur.    The situation 
can be recognized by the presence of any circuit loop composed solely of 
capacitors and at least one linearly dependent voltage source,  or the presence 
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of any circuit cut set composed solely of inductors and at least one linearly 
dependent current source. 

2.3.5 INTEGRATION ROUTINES 

Four integration routines are optionally available for use in SCEPTRE. 
Two of these, RUK and TRAP, were available in PREDICT and have been only 
slightly modified. The third routine, called XPO, was developed at the IBM 
Scientific Center in Palo Alto, California, by Dr. R. Warten and Mr. M. Fowler 
and adapted for use in SCEPTRE.  Studies to date indicate that XPO is usually, 
although not always, faster than the other methods. For that reason, this 
routine will always be used unless the user explicitly requests otherwise 
in the RUN CONTROL section of any run. The fourth integration routine, 
IMPLICIT, is discussed in subsection 2.3.5.5. This routine has advantages 
when the spread between the largest and smallest time constants in a network 
to be analyzed is very large. 

2.3.5.1 RUK Formulas and Variable Step Size Control 

The well-known Runge-Kutta fourth-order-accuracy formulas (Ref. 2) 
for the numerical solution of the differential equation 

y - f (t, y) 

are given by 

y (t + h) = y (t) + 1/6 k1 + 2k2 + 2k3 + k4 (37) 

where 

^ = h f t. y (t) 

k2 - h f ft +|, y (t) +1^ 

k3 - h f t + |, y (t) + | k2 

k. - h f 
4 

t + h, y (t) + k 

Variable step size control (Ref. 3) is achieved by computing 

5 - h f [t + h, y (t + h) 

- 17 - 

..— .;.,.....^iO-^-j^u,.__..., 
! ".U It I- ^.V i, < 1 _'.V.., ,... rfü« ■ ... 



|M«*i       I"    Wl  .  PO rpw- wr' '™,'-"fl"www*T-"""^-^      ,#-^' __-..,,.., 

and 

E   -    k,  - 2k, - 2k. + 3k. 13 4 5 
(38) 

The above formulas easily generalize to systems of differential equations,  In 
which case y and E become 

y (t)    -    [y! (t),    yn (t)] 

E   -    (e1, en) 

Now let 

Set 

V  "2'  1l,  127i  0 

ük    "    u1
+u2\  ^k  (t+h)l 

\   m    1l + 12\ \  (t + h) I 

If | e, | >1.5 U. for some k, the Integration step h is halved, the in 
dependent variable is restored from t + h to t, and the values of y and y are 
restored to the values at time t. 

If | e. | > 0.75 U. for some k, and | e. |äl.5 U, for all k, the current 
integration step is accepted, but the step size is halved for succeeding steps. 

If lu£ | e. |ä0.75 U. for all k, the step size is unaltered. 

If | e. | ^ U. for all k, and | e. j<L for at least one k, a doubling in- 
dicator is activated. Actual doubling is delayed for seven time steps. 
Halving always takes precedence over doubling; thus, anytime a halving signal 
is received, the step size is halved and doubling is delayed for at least 
seven steps. Similarly, after successful doubling, another seven steps must 
elapse before the step size can be doubled again. 

Recommended choices for u. , u_, 1., and 1- are as follows.  If absolute 
error control is desired, 

set 

0.0075 

0.00005 

0 

0 
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If relative error control la desired, 

set 

0.005 u. 

Ij^ - 0.00005 

u2 - 0.005 

12 - 0.00005. 

If smaller step sizes are desired than the ones yielded by the above set- 
tings, the 0.0075 and 0.00005 settings should be reduced by a factor of 32. 
This will yield half the previous step sizes. 

2.3.5.2 Modified Trapezoidal Integration (TRAP) 

2.3.5.2.1 Method 

Given the differential equation 

y(t) - f (t, y (t)), y (0) - yn 

consider the following numerical Integration scheme, 

yp (t + | h) - y (t) + | y (t) 

yp (t + f h) t + f h, yp (t + f h) 

t +|h, y (t) +|y (t) 

yc (t + h) 2 y (t) + y (t + f h) 
P    ' 

yc (t + h) t + h, yc (t + h) 

y (t) + f 

f 

Step-size control Is achieved by computing 

E 

The magnitude of  |E|  Indicates any changes to be made In step size, 

| h 1 yp (t + | h) - y (t) 

(39) 

(A0) 

(41) 

(42) 

(43) 

2.3.5.2.2 Truncation Error 

Inasmuch as y - f + y f and the true solution y Is approximated by 

yT (t + h) y (t) + h y (t) +f y (t). 
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one obtains, 

yT (t + h)   -   y (t) + h y (t) + \ (ft + y f ) (44) 

On the other hand 

f t + ^|, y (t) +^y (t) 

whence Equation  (41 ) becomes 

yc (t + h)    i    y (t) + | 

f  (t. y  (t))+3hft+^fy 

2y (t) + y (t) + ^ ft + | y f 

Subtracting Equation (41 )  from (44)  yields 

yT  (t + h)  - yc (t + h) -(4-4) 2        2' 
h        h   I    #   , h    »   ,, 
T " T j   y fy   ■    3" y fy 

which.   In turn,  yields the approximate local truncation error. 

(45) 

From Equations (40) and (45) one gets 

yp (t + -j)- y (t) - T ft + j y fy 

whence 

2h 
3 

y (t +1^) - y (t) .2 -  . h  . r 

" h ft+Fyfy (46) 

One notes that If f,. " 0, then Equation (46) Is a good representation 
of the local truncation error, neglecting higher order terms. 

Experience Indicates that, for systems of equations of the form Y ■ 
A (y) Y + B where A Is plecewlse constant, the method as well as step-size 
control Is adequate. 

2.3.5.2.3 Stability 

Consider the differential equation 

y   -    -ay, y(0) yo, a > 0 

The numerical integration scheme given by Equations  (39)  through (42) 
yellds 

.2 
y (0) (47) yc (nh) (--¥)" 
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This is easily established by Induction. Thus, for numerical stability 

it  Is necessary and sufficient that | 1 - ah +  ,r— |<1« This yields 0 < 

ah < 6 as shown in figure 6. 

Inasmuch as | ah | < 6 is necessary and sufficient for numerical stability, 
we say that the modified trapezoidal method has a stability radius, r, equal 
to 6. Moreover, from Equations (39) and (40) we see that the method requires 
two derivative evaluations (passes) per integration step. Thus, the pass 
number p associated with the method is 2. 

The ratio r/p is a measure of a method's efficiency in the sense of minimum 
number of Integration steps per given time interval. 

o 

Figure 6.    Root Locus of TRAP Characteristic Equation 

The higher the r/p,  the fewer steps are required  for a given a. 
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The following list shows r, p and r/p for a few representative methods: 

METHOD r_ £ r/£ 

Modified TRAP 6 2 3 

Euler (Ref. 4) 2 1 2 

Trapezoidal (Ref. 5) 2 2 1 

NIDE (1PASS) (Ref. 6) 0.8 1 0.8 

Runge-Kutta (Fourth-order) 2.78 4 0.7 

NIDE (2PASS) 1 2 0.5 

Hamming (Ref. 7) 0.85 2 0.425 

2.3.5.2.4 Step-Size Control 

As mentioned previously, the quantity 

E  - ^ E2    3 yp(t + r> - y <*> 

Is used for step-size control. 

(1)  The method is essentially the same as for RUK. Let u. , u., 1., 1- 
be real numbers a 0. 

Compute U ■ u. + u. 

If 

If 

If L 6 

yc (t + h) , L 11 + 12 yc (t + h) 

> 0.75 U, the step size is reduced. 

IA <  L, the step size Is increased. 

^ 0.75 U, the step size is not altered. 

(2)  Choice of Uj, u», 1. , 1«. 

Recall that E» attempts to represent the local truncation error.     For 
absolute error control set 

u. 0.01 

li    -   0.0005 

0 

0 
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For relative error control set 

Uj^    -   0.001 , u2    -    0.01 

Ij^    -    0.00005        , 12    -    0.0005 

The above values work well In practice. 

Reducing the above settings by a factor of A will reduce the step size 

by a factor of 2. 

2.3.5.3    Exponential Integration    (XPO) 

2.3.5.3.1    Method 

Given the differential equation 

y  (t)    -    f |t. y (t)|,    y (0)    -    y0 , 

this Integration routine gives the computed solution 

y (t + h)    -   y (t) + yA (t) h + e^ l h yp (t) (48) 

except for two cases that will be covered later.    In equation (48) 

y (t) - y (t - h0) 

(49) 

(50) 

• 
yA 

it) 
" 

h 
o 

h( )ia the last point comput 

■ (t) - y (t) - JA (t); 

X -   y (t) / yp (t) 

Since   y  (t) cannot be computed explicitly by the program, we take a small 
Euler Integration step and approximate    y (t)    by   y.   (t): 

y   (t +5)   -   y (t) +6y (t) 
6 

y    (t + 6)   -    f | t +6, y6 (t +6) 
b y,   (t +6)  - y  (O h 

y  (t)   - ^ ; .  0<6n 
'6 

^ if    v (r)    and V (t) have the same sign. 
The first exception occurs if y6 (tj ana yp \^/ 
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Then set 

yA(t) - o. 

which results In Equations (49) and (50) becoming 

yp (t) - y (t) (52) 

X - y6 (t) / y (t). 

This provides a better approximation to the solution of the equation 
y   «   X  y + b    without decreasing the overall effectiveness of the method. 

The second exception occurs if \ ,  computed either by Equations   (50) or  (52) 
Is non-negative.    Then the term 

\h      . e        - 1 
\h 

in Equation (48) is replaced by 1 + —j, thus changing Equation (48) to 

y (t + h) - y (t) + yA (t) h + (1 + j1) hyp (t) (53) 

It can be shown with some effort that Equation  (53)  is equivalent to a trap- 
ezoidal type integration method. 

2.3.5.3.2    Truncation Error 

e    — ] Noting that     , when expanded in a Taylor series, becomes 

x      . 2 _ 
e x" i    - 1+1 + ^+0 (xJ) 

Equation  (48)  can be written 

h2 
y (t + h)    -   y (t) + yA (t) h + yp (t) h + ^X^ (t) + 

hVyp (t)    +   0  (h4) (54) 
6 

2 3 
-   y (t) + y (t) h + |-y6 (t) + j-\yb (t) + 0 (h4) 
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Referring to Equation (51), note that 

y5 (t)    -    y (t) + j y* (O -y (t) |M + o (62) 

Substituting Equation (55) Into equation (54) yields 

2        2 
y (t + h)    -   y (t) + y (t) h + y (t) 7- + ^-6 

(55) 

y (t) - y (t) — + 0 (hJ) 

(56) 

It is noted that the use of either exception to the principal Equation (48) 
still yields the truncated expression, Equation (56). 

.      Since 6 £ 7,  the method is second order exact; I.e., the error Is of order 
h .    This characteristic will be used In Equation (57)  In the next section. 

2.3.5.3.3    Step-Size Control 

For t ^  t +Q5t + h,  let y- (t + ^ ) be the true solution to the 
differential equation, let y    (t +^) be the computed solution, let y    (t +^ ) 
be an expression obtained bycdlfferentlatlon of y    (t + I) with respect to 
I; i.e.. 

* (t +^) - 

yA (t) + (l +XÜ yp (t), \2o 

kyA (t) + eX^yp(t) ,   \<0 

and let y    (t +^) be obtained by substituting y    (t + ^) into the differential 
equation. 

Ideally, step control should be based on the expression 

•h 
E     -I     ly» (t +0 - y. (t -O     d ^ •/:i' yT (t +0 - ye (t -I) 

however, y (t + ^ ) is not available except at E, ■ 0. 

Making use of the fact that 

yc(t+^) - f [t +1-, yT (t +§) + |yc (t +§) - yT (t ♦t) || 

yT (t +^) + 0 (n 
(57) 

we obtain 
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Eo "[ [yc(t+^) "^ (t+5)] d?+/  [yt<t+^- 
0 0 

yc (t+ ^)]   d^ 

h 

■ /     f^c Ct +U - *e (t +?)J    d ^ + 0 (hA) 

0 
• • •« 

If y    (t +|) - y    (t +0 does not change sign for 0 ^ ^ <;   h, 

| E0| i h |yT (t + h) - ye (t + h) | s h| yc  (t + h) - ye (t + h) l + l 0 (h4) | 

Thus,  for small h, 

E    -    h |yc (t + h) - ye (t + h)l 

yields an estimate of the truncation error. 

Let    u,, u-, 1., 1. be real numbers 2 0.     Compute 

U - u1 + u2 1 yc (t + h) > 

L - 11 + 12 j yc (t + h) 1 

If I E |>U, the step size Is reduced. If | E| < L, the step size Is Increased. 

If L £ E £ U, the step size Is not altered. 

For absolute error control, set 

u. - 0.0075     ,     u2 - 0 

Ij^ - 0.0002     ,     ^ " 0 

For relative error control, set 

Uj^ - 0.005      ,     u2 - 0.005 

1  - 0.0001     ,     12 - 0.0002 
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2.3.5.4 General Absolute and Relative Error Criteria 

All three explicit integration methods described in this section are 
approximate methods that are used to integrate differential equations and, 
thereby, update the state variables at each time step. Each of these methods 
has an automatic control that allows step size to be increased and decreased 
during the transient problem. The method of control used compares some func- 
tion of the step size and the derivatives of the state variables to a quantity 
that serves as a standard as, for example, in Equation (43). The standard 
may be a constant or a variable function of the state variable. If the former 
Is used, it is termed an absolute error criterion; if the latter is used, it 
is termed a relative error criterion. 

Consider the situation in which two state variables are very different In 
size. Let y, (t) - 1 and y» (t) ■ 100.  For all practical purposes, it 
is usually unnecessary to integrate the derivatives of these state variables 
to the same accuracy. If an absolute error criterion is used, this is just 
what Is done, and the step size may be unnecessarily Inhibited. If, however, 
a relative error criterion is used, effectively a larger error will be tol- 
erated for the Integration of y» (t) and a larger step size will be permitted. 
In general, then, it would be best for the user to use relative error control 
when large values of state variables (capacitor voltages and inductor currents) 
are expected. 

Relative error control is programmed with all three explicit methods, 
but the user may easily modify the relative controls or enter absolute con- 
trols (subsection 2.2.10 of Volume I). If larger numbers are used tor the u. or 
u» entries, the solution process will be less likely to halve any particular 
solution step size; smaller numbers would Increase the likelihood of reduced 
step sizes. If larger numbers are used for the 1, and 1» entries, the solu- 
tion process is more likely to Increase any particular solution step size; 
smaller numbers make Increased step sizes less likely. The user should 
realize that any Increase in solution speed that may result from adjustment 
of these numbers must necessarily come at the expense of integration accuracy. 

2.3.5.5 Implicit Method 

The integration methods described in subsections 2.3.5.1, 2.3.5.2 
and 2.3.5.3 are all explicit In form and can be used Interchangeably within 
the mathematical formulation of SCEPTRE without difficulty. If, however, any 
implicit method is to be used, whether single step or multistep, an additional 
computational step Is necessary. This step is discussed In the following 
paragraphs and In Appendix A . 
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2.3.5.5.1 Basic Implicit Format 

A generalized form of all l.upllclt Integration methods can be 
written as 

Y(N+1) -  E  a. Y(n-l) + h   L   b. Y(n-l) 
1-0  1 1—1 

(58) 

where Y Is the vector of system state variables, Y Is the vector of state 
variable derivatives, n Is the step number, h Is the step size and the a., 
b^ are suitably chosen constants. Multistep methods are Introduced If 
P >0. The simplest derivative form of Equation (58) Is 

• 
Y(n+1) - Y(n) + h Y(n+1) 

which Is commonly referred to as the Implicit or backward Euler technique. 
If an mth order system of differential equations Is to be solved by this 
method, the following generalized matrix equation will result: 

QV fly 

i-hgg—- (Yl,...Ym,t)   .   .   .  -hg ö^- (Yl,...Ym,t) 
1 •      m 

• • •       • 
.   ay . QY 

-hg-g— (Yl,...Ym,t)   .   .   .   1-hg g^2- (Yl.. .Ym,t) 
1 m 

AYlk 

*            1 
•              1 

m 
L         J 

■¥1 (Yl,..Ym,t) 

-f    (Yl,..Ym,t) m 

(59) 

The Iteration Implied In Equation (59) Is carried out to convergence at each 
time step.    The k superscripts here Indicate the kth approximation to the 
final value at convergence at each step, g is a constant that depends on the 
order of integration, and F^ is a function of the 1th differential equation, 
the step size and past values of the mth state variable.    Sparse matrix 
techniques will be applied to the operation implied by  Equation (59) when 
large problems are encountered. 
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2.3.5.5.2    The Jacoblan 

The Y^ terms In Equation (59) are readily available from the basic 
program formulation; but the general partial derivative term 

Hi 
8Y 

,  1 ä 1 ä  m,    läj^m 
j 

Is not. To determine what Is really needed, It Is desirable to frame the 
entire derivation of the symbolic Jacoblan In terms of the general matrix 
equation 

(60) Y - AY + BU + NU 

Since the desired quantities are the general 

A 
it can be seen from partial differentiation of Equation (60) that these are 
contained In the matrix A. Hence the convenience of the general notation Is 
given In Equation (60). 

What now follows Is the construction In symbolic form of the general matrix A 
In terms of the mathematical formulation that was derived In subsection 2.3.1. 
Begin with 

SA - h  " B14Tll+ B24T l2 + B3AT h +  B84 T J8     (5) 

and 

V3 " -B3A V4 " B35 V5 " B36 V6 " B37 E7 
(4) 

Substitute Equation  (9)  and  (13) into equation  (5)  for 

C44 ^4 = B14 T Cll("B14VB17i7) + B24 T V'  (-B24VB27E7 

T T T T 
"B25 R55 B35      l3 ' B25 R55 B85      J8) + B34      h + B84    J8 

(61) 
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Use Equations (24),   (10),   (23) and (15) Into Equation (A)  for 

43*3 + L36 (B36 T ^ + B86 ' i8) (62) 

" -B34V4 " B35MG 

-1 

-B25 TG22 (B24V4 + B27E7) + B35 T h  + B85 ' J8 

T  ' T " 
" B36 a63 + L66 B36 ) l3 '  B36 hb  B86  J8 " B37E7 

Equation (61) can be manipulated to yield 

(C44 + B14  C11B14) V4 " "B14  C11B17 E7 " B24  "R   T 24 '4 "R "' (B24 \ 

T T 
+ B27E7 + B25R55B35  13 +  B25R55B85  J8 

+ B34 T h + B84 T J8 

) 

Equation (62) yields 

[L33 + L36 B36 T + B36 L63 + B36 L66 B36 "] h 

'    -B34V4 " B35MG "' (-B25 TG22B24V4 " B25 TG22B27E7 + B35T h + 

l) -B37E7 " 

(61/) 

(62^ 

T 
B85  J8 

T ' T * 
L36B86  J8 ' B36L66B86  J8 

If only the coefficients of V4, I3, V4 and I3 (the stat^ variables and the 
state variable derivatives) are retained, Equations (61) and (62) become 
considerably simplified and can be written In matrix notation as 

V4 M  o c 

"L 

-1 

(63) 
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(-B24 T \   \j    ^B3A T " B2A T ^   B 25R55B35 ) 

^SSV1 B25 
-1 

G22B2A " B3A) (~B35MG B35T) 

where M,, ■• C,, + B,. 
C    A»*   lA Cll B1A 

and "L 
T T 

L33 + L36B36  + B36L63 + B36L66B36 

The matrix appearing on the right side of Equation (63) Is now In a form 
corresponding to the first term on the right side of Equation (60). This 
matrix Is the symbolic form of the general A matrix that Is needed to use 
Implicit Integration (Ref. 8, 9) with the basic program formulation. 

Another method Is available to construct the Jacobian that Is based on a 
numerical rather than a symbolic approach. Each time that the Jacobian Is 
to be re-evaluated, m calls are made to SIMUL 8 to compute 

^(j) F (Y1, Y2, ... Y^, Yj + AYj, Yj+1, ... Ym, t) 

Approximations to the desired partlals are than obtained by 

:(j) _ 

AY, 
(64) 

2.4 DC SOLUTIONS 

SCEPTRE offers five DC solution modes, Initial Conditions, Sensitivity, 
Monte Carlo, Worst-Case and Optimization. Any one of the five may be used 
alone, or as a source of Initial conditions for a Transient or AC run. 
Alternatively, the user may supply Initial conditions data himself as entries 
to a transient or AC run without the help of the DC options. One of the DC 
options, called Initial Conditions, takes part In all DC solutions.  It may 
be called separately, and If any other DC option Is called, that option usej 
two or more passes of the Initial Conditions cilculatlon to produce Its 
results. The Initial Conditions solution (and thus the other DC options 
also) may use either the Newton-Raphson or Implicit method. (See App. A, Vol. I) 

2.4.1 INITIAL CONDITIONS SOLUTION BY NEWTON-RAPHSON METHOD 

2.4.1.1 Technique Description 

Many practical circuits require computer solution of the initial 
conditions prevailing at the start of the transient (time a ^ before the 
transient solution can begin. These values can always be determined by a 
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separate transient run In which all forcing functions are held at the values 
for time - t0.    However,  an alternate procedure based on an Iteration technique 
using Independent variables other than time was considered desirable.    This 
procedure presents the advantage of economy of machine time on all circuits 
for which convergence occurs.    This section will describe the formulation of 
this portion of SCEPTRE, which Is completely Independent of the transient 
formulation. 

A similar derivation for the adjoint calculation Is given In 
Appendix F. 

If an L tree Is  set up based on the preference order E,  L.  R, C a 
general B matrix may be set up according to the procedure outlined In sub- 
section 2.2.    The zero-valued submatrlces arise from the L tree and the 
preference order*.    The  resulting B matrix is shown in Table II. 

TABLE II 

GENERAL B MATRIX FROM THE L TREE 

4 S 6 
1 

1    1 
1 B

14 B15 B16 B17 

2 0 B25 B26 B27 

3 0 0 B36 B37 

8 B84 B85 B86 B87 

9 B94 B95 B96 B97 

0 B04 B05 B06 B07 

The following equations (among others) arise from this B matrix if 
vectors V,, I., I, and submatrix B-, are assumed to be zero.  These assump- 
tions are based on the known final values of V,, I,, and I, for the Initial 
condition problem and the absence of any current-source capacitor cut sets 
(see the restrictions in subsection 2.4.1.4). 

For example, the submatrix B24 must always be zero since non-zero entries 
in it could only arise when resistor links close loops containing capacitor 
tree branches.  The preference order prohibits this possibility. 
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V9 + B95 V5 + B97E7 - 0 (65) 

V2 + B25 V5 + B27 E7 " 0 
(66) 

I5 " B25 l2 '  B85  J8 " B95  J9 " B05  J0 " 0 
(67) 

To get all the variables of Equation (67) in terms of V_, V«, Vs,  and 
effective sources, the following substitutions are made: 

l5 ' G55 V5 

l2 ' G22 V5 

J0 - 0J9 

J9 " G99 V9 + ^9 

where: 

§    a is a matrix containing the number of rows equal to the number 
of secondary current sources and the number of columns equal to 
the number of primary current sources 

• G,,. and G-_ are diagonal matrices containing only conductances 

• G99 is a diagonal matrix containing only diode and transistor 
junction conductances 

• Q terms are described in Appendix II 

Then,   Equation (67) becomes 

G55 V5 - B25 T G22 V2 " B85 T J8 "     [B95 " + B05 ^ ]  [G99 V9 + %] 

(67) 
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Equations (65),  (66), and  (67)  may be designated as Fi  (V9,  V2, V5), 
F2  (v9» v2» v5^ and F3 ^v9» v2' v5^ »  respectively.      If the basic Newton- 
Raphson method (see Appendix   D   )  Is applied to Equations (65),   (66), and 
(67): 

Fl  (V V V  +   ^    (V  V2'  V5)    AV9 + 

-4r2    
(V9' V2'  V5)    AV2 + 

-^i (V9. V2.  V5)    AV5 - 0 

riF 

F2   (V9. V2. V5)  +   -^ (v9, v2, v5)  ^v9 + 

•avj   (v9. v2. v5)   AV2 -f 

SF. 
-^ (V9.  V2.   V5)    AV5 - 0 

OF- 
F3  (V9' V2' V5) +   ^      (V  V V   AV9 + 

VT,    (V V2' V5)    AV2 + 

"avT   (V9' V2' V5)   AV5 " 0 

or 

Fl  (V9' V V 

F2   (V9. V2.  V5) 

F3  (V9' V2' V5) 

+ Z 

- 

AV9 

AV2 

^5 
-. 

(68) 
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where the JacobIan Is 

aF, 
jjy      (V9,   V2,   V5) 

Ü2 
dV9 ^9' V2,  V5) 

dV9 ^ V2, V5) 

If 

ap 

^V9 - V9 (n + 1) ■ - V9 (n) 

yv2 - v2 (n + 1) • - V2 (n) 

^V5 - V5 (n + 1) - - V5 (n) 

SF, 

avT  ^-^'V    -^vT (v9'v2'V 

dV2    ^9' V2, V5) av5 ^9* V2, V 

OF OF 

IV^    (V9'V2'V      -avj (V9' V2' V 

(69) 

where n Is used to designate the results of the ntü iteration pass, then 
Equation (68) becomes 

F1  (V9, V2. V5) 

F2  (V9, V2, V5) 

F3  (V9' V2' V 

leading directly to 

V9 (n + 1)1 
V2 (n 

+ 1) 

V5 (n 
+ 1) 

+ z 

r~ "1 

V9 (n) 

V2 (n) 

V5 (n) 

1  _J 

V9 (n + 1) - V9 (n) 

V2 (n + 1) - V2 (n) 

V5 (n + 1)  - V5  (n) 

-Z 

(70) 

*!  (V9, V2, V5) 

F2   (V9,  V2, V5) 

F3 (v9, v2, v5) 

(71) 
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Equation (69) may be written more explicitly If the Indicated differentiations 
are performed on  Equations (65),  (66), and (67)  to obtain: 

Z- 

I 

0 

B95 T + B05 "I G99 'i 

0 

I 

T 
■B25      G22 

J95 

25 

'55 

so that Equation (71) becomes 
- -          —| -    - -1        1 

V9  (n + 1) V9 (n) 

V2  (n + 1) - V2  (n) - Z 

V5  (n + 1) V5  (n) 

- - 1 

Fl (V9' V2' V5) 

F2  (V9.  V2.  V5) 

F3  (V V2'  V5) 

(72) 

Equation  (72)  may be written in more convenient form as follows  (see also 
Appendix   E): 

V9 (n + 1) 

V2 (n + 1) 

V5  (n + 1) 

I 

0 

T T 
B95      +B05   Q "99 

0 

" B25      G22 

B 95 

'25 
;55 

-1 

- B97 E7 

B27E7 

a 95 + B05   Q|        QQ + B 
85 8 (72') 

Equation  (72') signifies a computational sequence as follows: 
Quantities V9, V2, and V5, the vectors of voltages across primary current 
sources,  resistor link, and resistor tree branches respectively, each have 
some assumed value (usually zero)   to begin the computation at n = 0.     All 
members of the right side of Equation  (72')   that may be voltage dependent 
are updated.    The left side of Equation (72*)  is then computed and the first 
iteration  (n = 1)  is complete.    The right side of Equation (72')  is re-evaluated 
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on the basis of the results of the first Iteration and the left side is 
again computed, thereby completing the second Iteration (n ■ 2).    This 
process is repeated up to 100 times.    After any Iteration,  if 

lV(n + l)-
V(n)lS0-001    I   V(n + 1) I + 0-0001 (73> 

is satisfied for the set of all voltages in Equation  (72), convergence is 
considered to have occurred and the procedure is terminated.     If after 100 
iterations  Equation (73 )  is not  satisfied,  a diagnostic message will be 
printed indicating that convergence has not occurred.    Experience to date 
has shown that the Newton-Raphson procedure will converge for most circuits 
in less than 30 Iterations. 

Convergence of the Newton-Raphson method can sometimes be prohibitively 
delayed if for some reason a large forward bias (V>0.8V)  is applied to any 
diode or transistor junction that has been represented by the user in the 
conventional closed form J ■ I    (#"-!).     In this case,  the slope of  the 

8 • 

diode curve,  given by G«     -JTT - 01 e     , will contribute a very large term 
J Q V S 

in Ggg and consequently in the Z matrix.    The practical results of this can 
be more easily appreciated by consideration of a one equation system as 
represented by the second equation in Appendix   D.       A large derivative caused 
by a highly forward-biased diode leads  to a very small step  (Ax)   in the 
Independent variable.    Many steps will therefore be required to complete 
convergence. 

If convergence has occurred,  quantities V^, V2,  and V5 are now known. 
There remains to compute only capacitor voltages and Inductor currents since 
capacitor currents and inductor voltages must be zero. 

2.4.1.2    Computing Capacitor Voltages 

From the B matrix in Table II,  the capacitor link voltages  can be 
written in terms of the tree branch voltages as 

Vl - -B14 V4 - B15 V5 " B17 E7 (74) 

In addition the principle of conservation of charge permits 

-B14 
T C11 V1 + C44 V4 - .B14 

T C11 V1 (0)  + C44 V4   (0) (75) 

where V-   (0)  and V,   (0)  are initial voltages that may be specified by the user. 
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Equations  (74)  and (75) lead to 

-1      I  „      T 
V4-Mc |-B14      C11B15V5-B1A     C11B17E7-B14    Cll Vl (0) 

+C44 V4  (0)j (76) 

T where M    - B.,       C,,  B,. + C. . c 14        11    14        44 

Once V.   is determined, V.  may be found from Equation  (74). 

.Note that Class -4 elements can occur only if a capacitor cut  set 
exists. Otherwise Equation  (76)  will be  identically zero and all capacitor 
voltages can be determined from Equation  (74). 

The use of Equation (75)  permits  solution of a class of networks  in 
which the  final value of capacitor voltage is dependent on an intial value. 
Consider the circuit shown in figure  7, which contains a capacitor cut set. 

Cl =9pf 

M— 
10V-5- 

L 
__C2=lpf 

Figure 7.  Capacitor Cut Set Circuit 

If both capacitors are initially uncharged,  the final values of the capacitor 
voltages after the switch is closed must be VC1 - 1 volt, VC2 - 9 volts.     If 
however,  capacitor Cl has an initial charge of 5 volts,  the principle of 
conservation of charge (reflected in equation  (75)) requires  the  final result 
to be VC1 - 5.5 volts, VC2 - 4.5 volts. 

2.4.1.3    Computing Inductor Currents 

Since V.  is known, 

I2 " R22      V2 (77) 

the inductor tree branch currents than can be written from the B matrix in 
terms of link currents as 

H '  B26 T h + B36 T l3  + B86 T J8 + B96 " J9 + B06 T J0  (78) 
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In addition, Che flux relations around an Inductor loop permit 

B36 L66 1f, + L33 l3 '  B36 L66 I6 (0) + L33 13  (0) 
(79) 

where I6  (0)  and I* (0) are Initial currents that may be specified by the 
user.    Equations  (78) and (79)  lead to 

I3- "L      |L33 l3 (0) + B36 L66 l6  (0) 

-B36L66     K   Tl2+B86Tj8+B96Tj9+B06T| 

where    ^ - B36 L66 B36     + L33 

* 
(80) 

Once I3 Is determined, 1^ may be found from Equation (78). Note that Cla8S-3 
elements can occur only If an inductor loop exists.* Otherwise, Equation (80) 
will be identically zero and all inductor currents can be determined from 
equation (78). 

The use of Equation (SO)  permits the solution of a class of networks 
in which the final values of Inductor currents are dependent on the sizes of 
the respective inductances. Consider the circuit shown in figure 8, which 
contains an inductor loop.  If both inductors are initially relaxed, the 
final values of the Inductor currents after the switch is closed must be 
IL1 * 1 amp, IL2 ■ 9 amps. 

10V -=- LI =9h L2 = Ih 

Figure 8.   Inductor Loop Circuit 

See paragraph  (subsequent subsection 2.4.1.A)  on network restrictions  for 
qualification of this. 
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The task of computing the capacitor voltages and Inductor currents 
complete the initial-conditions problem.    These quantities may then be 
transferred to the transient program to serve as Initial conditions. 

2.4.1.4    Restrictions 

Since the Initial-conditions program Is  formulated differently and 
for a different purpose than is the transient program, certain restrictions 
apply to the initial-conditions program that do not apply to the transient 
program.    These restrictions and the practical considerations that lead to 
them are as follows: 

1. No circuit containing a loop composed entirely of voltage 
sources and inductors will be accommodated.    This situation 
would cause an infinite Inductor current and is obviously of 
no practical Importance.    The presence of an E-L loop is 
disclosed by the condition B-7 4 0. 

2. No circuit containing a cut  set composed entirely of current 
sources and capacitors will be accommodated  (see figure 9). 
This situation would Invalidate equation (65) and complicate 
the solution process by requiring that V^ be carried along in 
the Newton-Raphson procedure.    This  cut set situation can 
always be removed by arbitrarily connecting a large resistor 
from node A to the ground.     Note that the configuration of 
figure 9 could be handled by the transient portion of SCEPTRE 
if a Newton-Raphson solution was not desired.    The presence of 
a J - C cut set is disclosed by the condition that either 
B84'  B94'  or B04 * 0- 

Figure 9. A Current-Source Capacitor Cut Set 
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3. The choice of Independent variables will be somewhat restricted. 
No resistor or Inductor current may be used as an independent 
variable.    Furthermore, a capacitor voltage may be used as an 
Independent variable only If It Is In parallel with a resistor 
or current source (Vc ■ VR, Vc - Vj).    The objective here Is to 
avoid the need for any auxiliary computation between passes of 
the Iteration procedure. 

4. Networks containing only capacitor cut sets can be accommodated 
only If the members of the cut set are constant. 

5. Networks containing only Inductor loops can be accommodated 
only if the members of the loop are constant. 

2.4.2    MONTE CARLO 

Monte Carlo calculations  in SCEPTRE consist of multiple initial 
conditions solutions  for which certain element values have been chosen 
using probability distributions specified by the user.    These variable 
elements, representing perhaps production deviations from nominal values, 
cause corresponding variations  in circuit output quantities.    The Monte 
Carlo function defines the selection of variable element values, controls 
the corresponding Iterative solutions, monitors output values, and tabulates 
statistics for the output quantities. 

The user can specify either the uniform or Gaussian distribution for 
the variable elements.    Since the solution is calculated for TIME = 0,  it 
is independent of capacitive and inductive elements.    Thus,  it is only useful 
to vary resistors,  independent current and voltage sources, and primary and 
secondary current sources specified by defined parameters. 

The value of a variable element is determined by its specified mean, 
£/,  standard deviation, a , and a random number, ^•, picked from the selected 

probability distribution.    The random number generator provides samples 
from the selected type of distribution with zero mean and unit standard 
deviation.    Then the element value e.g.  R,   is calculated as 

"U • a 

If the random behavior of the element value cannot be directly defined 
in terms of one of the two standard distributions,  the mechanism of defined 
parameters may be used.    By specifying the means and standard deviations 
for one or more defined parameters, and defining the element value using an 
equation,  expression or table in terms of these parameters,  the user can obtain 
a more complicated probabilistic behavior of the element value. 
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As each new set of values Is chosen for the random element value, 
an Initial conditions calculation is executed.    For each output quantity, 
the sum and sum of squares are accumulated, and the minimum and maximum 
observed over all iterations are tabulated.    The mean and standard deviation 
for each output X are then computed as 

M i    i (81) 

and 

2 (x    - M )' 
1  KXi        x; 

1/2 
(82) 

where M^ is the mean,  S^ is the standard deviation,  and the sums are taken 
from 1 to N, where N is the number of Monte Carlo Iterations. 

2.4.3    SENSITIVITY 

The Sensitivity option gives the user the partial derivative of a 
network function with respect to a list of network Independent variables. 
This option gives the user the "un-normalized sensitivity",  i.e. 

UH 

/ M ax (83) 

The normalized sensitivity, or the percentage change in a function with 
respect to the percentage change in an independent variable, may be obtained, 
if desired, by using a defined parameter.     The normalized sensitivity is 

/ 
x  8H 
H   dx (84) 

To calculate sensitivity, an initial conditions run Is made on the 
original network,  and appropriate network element  currents and voltages are 
saved.    An adjoint network as described In Appendix F is generated.     (Ref.   10, 
11.)    For each network function whose sensitivity is requested,  an Initial con- 
ditions run is made on the adjoint network with a proper source,  and the element 
currents and voltages in the adjoint run are saved.     The proper product of  the 
original network values and the adjoint network values  (see Appendix F)  gives 
the required sensitivity.    Table III gives the sensitivity (superscript "a" 
indicates adjoint values). 
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TABLE III 

SENSITIVITY COMPUTATIONS 

INDEPENDENT VARIABLE SENSITIVITY 

Resistor (R) 

Independent Voltage 
Source (EJ 

Independent Current 
Source (J-) 

Factor in Secondary 

Current Source given by Defined 
Parameter (P) where J- ■ P*J 

(Current through the resistor In original 
IC run) x (Current through the same 
resistor In adjoint IC run), I.e., 
(1R) (IRa) 

Negative current through the voltage 
source In adjoint IC run I.e., IE* 

Negative voltage across the current source 
In adjoint IC run I.e., -VJ| 

o 

(The primary current In original IC run) 
x (Negative voltage across the secondary 
source In adjoint  IC run)  I.e.,  (Ja) 
(-VJg) 9 
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2.4.4    WORST CASE 

A Worst-Case calculation extrapolates linearly along the gradient vector 
of an objective function, F,  to reach a function minimum and maximum at one or 
more independent variable bounds.    The gradient vector VF is computed* for nominal 
circuit conditions,  and it is assumed that F depends linearly on the N independent 
variables.    The gradient indicates the direction in which the function grows most 
rapidly, and the assumed linearity allows extrapolation along this vector to reach 
the minimum and maximum. 

j 
The maximum of F is then obtained by extrapolating the Independent variable 

values X as far as possible along the gradient vector: 

3^ - Y +XrF,        X>0 (85) 

-» —• i 
Here, X^ is the independent variable vector producing the high value of F, Y 
is the vector of independent variables at the nominal point, and \ is taken as 
large as possible with XH remaining within bounds. 

Under the same assumption, the minimum of F is obtained by extrapolation 
along the negative of the gradient vector: 

i 

XL = Y  -UVF,        V>0 (86) 

—♦ 

XL is the vector of independent variables at the point producing the low 
value of F,  and y is chosen as large as possible, keeping the independent 
variables within bounds. 

The independent variables are specified with lower and upper bounds 

I 
F    £ X    £ Q  ,  i = 1  ...N 

i 
■ 

* 
See Appendix F for a discussion of the Adjoint method, used for computing 
the gradient vector. 
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If the i— component of the gradient vector     —77 is positive, then F 
0 * 9F increases as X^ increases from Y^ toward Q^.    If» however, -yrr   is negative, 

F increases as X^ decreases from Yj. toward P^. 

The general equation of a line in N dimensional space may be written 
as 

XrYl X2"Y2 VYN 
M, Vr N 

where  (Xi,  i-l...N)  and  (Y^  1-1...N) are two points on the line and ^ is 
a unit vector in the direction of the line. 

The equation can be restated 

X1-Yi 
constant (87) 

When the J— component takes on its lower bounding value, we have 

,  i = 1...N 
Xi-Yi P  -Y 

1  J 
V 

j 

or. 

xi= 4 (VV + Yi 
The length of the line segment Is given by 

2 

J 1   <X1-Y1 ) - 
(P^) 

"? I"* ü£!£ 

since  /uis a unit vector. 

Thus, 

j 

P  -Y 
■1     .1 
fJ. 
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the distance along the gradient to the lower bounding surface of the J— 
Independent variable. 

Similarly, 

2£li 

the distance to the corresponding upper boundary surface. 

For the high limit calculation, a search is made through all Dp^ for 

for which axi is negative, until the 
(Note that F is Independent of any 

which -rr:     is  positive, and all DQ^ 

smallest number from this set is found. 
8F 

X^ for which -xrr ■ 0).  This minimum value, DHIrH, represents the largest 

distance X can move in the direction of the gradient vector before it reaches 
a boundary.  XHJQH is the independent variable which established the allowable 
displacement of X associated with D.. 

UQ^ for which 

HIGH' 

is negative, and all 

is positive, produces another minimum, D  ,, which is the 

A similar search through all Dp^ for which -*tr 
3F 

-*Tr is positive, produces another minimum, "T0U» 

largest possible displacement of X from Y along the negative of the gradient 
vector before striking a boundary. X^Q^ IS the independent variable which 
established the allowable displacement associated with DTQW« 

XRIGH 
and XLOW may or n^y not be the same variable.  Figure 10 

Illustrates a two-dimensional case where the high limit is determined by 
the upper bound of one variable (X2), and the low limit is determined by 
the upper bound of another (X^). 

When the distance DuTru has been determined. Equation (87) can be used 
to define all Independent variable values, X^^GH» at  t*16 high limit. 

Xi-Yi 
HIGH 

(88) 

or 

\ 
Y + D. 

HIGH 
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HIGH LIMIT 
DETERMINED BY Q, 

\ XHIGHISX2 

V 
^ 

VF\7 

\ LOW LIMIT 
DETERMINED BY Q 
(xLOW is x1 

\ 

Figure 10. Two-Dimensional Example of Worst-Case Limits 
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Note that this Is exactly In the form of Equation 85, since/; Is pro- 
al to 7F and DHIGH 

>0. 

In a similar way, we find the Independent variables at the low limit 
to be 

^^"^OW    ^ (89) 

as required by Equation (86). 

When XH and X^ have been found, computations of objective  function 
value and gradient at each of the  two points are carried out.     Inspection 
of the gradient vector at these points can give Information on whether the 
true extreme values occur within the bounded area or If they are external. 

i 

2.4.5    OPTIMIZATION 

The Optimization option finds the local minimum of an objective function 
with respect to a list of bounded Independent variables.    The local minimum Is 
the point In the Independent variable space at which each component of the 
gradient either Is zero, or Is negative  (function decreasing) with Its 
corresponding Independent variable at a bound. 

The Optimization, or more accurately minimization,  function Is based 
on the Davldon algorithm (Ref.   13).    As in most such processes^ the gradient is 
computed for some set of values of the Independent variables, Y, within all 
boundaries,  and the Independent variable vector Is displaced along the gradient. 
At  this new point, the gradient vector is again computed, and the cycle repeats 
until the error (discussed below)   is less  than some criterion value. 

- 
The adjoint method of computing tne gradient obviates  the use of a 

direct search method with its Inherent numerical problems.    Furthermore, 
since the adjoint procedure determines the gradient with only two IC 
solutions regardless of the number of Independent variables,   it has a 
speed advantage over direct search methods and other gradient methods. 
This  speed advantage is enhanced because the auxiliary IC solution  (for 
the adjoint network)   is strictly  linear and will generally converge quickly. 
Thus the combination of rapid gradient calculation and efficient search for 
the function minimum provide the SCEPTRE user with an extremely versatile 
tool. 

The Davidon method is a synthesis of two techniques:    The Steepest 
Descent Method and the Newton-Raphson method applied in the Initial Conditions 
calculation  (subsection 2.4.1).     The Newton-Raphson method is  based on the 
truncated Taylor expansion 

F  (X)  = F  (Y) + h • V F  (Y) + 1/2 h 'G  (Y) h 

where h is the displacement vector (X - Y) and G is the Hessian matrix of 
second partial derivatives of the objective function. 

a2F 
^j ~ 6x1 ax 

j 
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Differentiation of this approximation to F(X) leads to the expression for the 
gradient. 

VF(X) - VF(Y) + G(Y) "h. 

At the minimum value X, VF(X) ■ 0, so that the displacement h is given by 

TT- -G'W) VF(Y). 

In the vicinity of the minimum, it is assumed that F is essentially a quadratic 
function of X, so that the point at which G is evaluated is not critical. 

The Steepest Descent step is determined completely by the gradient 
vector, and thus has the advantage of simplicity. However, the process is 
very Inefficient, even for functions with quadratic dependence on the 
Independent variables, and is not generally recommended except for initiating 
a minimization calculation. 

Because the Davldon technique smoothly changes from the Steepest Descent 
to the Newton-Raphson Iteration, maintaining suitable conditions on h at all 
times, it is a very effective procedure (Ref. 14). 

The Davidon process (Ref. 15) starts with an initial approximation H0 to G 
which is generally the unit matrix and is thus positive definite (since the 
eigenvalues all have the value unity).  The iterations produce an Increasingly 
better approximation H to G~^  without matrix inversion, while continuing to 
enforce the condition of positive definiteness which will be required at the 
minimum. 

The iteration for the Davidon method is given by 

l(i+l).l(i) +h(i)H(i) rF(i) 

where 

X   is the vector of independent variables; 

h   is the step size, chosen by an auxiliary linear search process; 

H   is the approximation to G 

and the superscript Identifies the iteration at which the function is evaluated. 

The matrix H is updated as follows. Define the vectors 

r.-h(i)H(i) TF(i) 

and 

then 

^VF(i+1) - TF(i) 

H(i+1) .. H(i) + A(i) + B(i) 
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where the elements of matrices A   and B   are respectively given by 

aJk Z • ^ 

bj^   -     (H(1)ir)i(H(i)ink 
/U'H AT 

The matrix A provides convergence of H to G , while B maintains the 
positive deflnlteness of H at each step. 

The Implementation In SCEPTRE Is based on the original formulation 
produced by the Argonne National Laboratory (Ref. 16). However, the original 
code was Inappropriate for constrained optimization and so the transformation 
of Independent variables suggested by Box (Ref. 14) was incorporated to pro- 
perly take care of the inequality constraints of the SCEPTRE independent 
variables. This transformation may be stated in the following way:  Suppose 
the ith independent variable X^ is restricted so that 

Pi^Xi.Qi 

Then the transformation of variables 

is  introduced. The corresponding derivative Is given by 

dX,   /Q,-P, 
- ,  2  '  8in Yi 

Note that 
Xi - Pi Yi - 0 

X, - Qi Yi - n 

and dXi 

,f "0     at both extremes 
dYl 

The gradient components with respect to the new variables are given by 

9F       dxi      gp 
^"   dYi      axi 

- 50 - 

- ■ ■■■ .._ 



1 

Thus, the effect of the transformation Is to Introduce zeros of the gradient 
along the boundary, making these points acceptable to the algorithm. No such 
zeros are introduced within the boundaries, and the algorithm will preferentially 
converge to an internal minimum if one exists. 

Another feature is the removal of a restriction present in the original 
formulation, which required the minimum value of the objective function to be 
positive. A floating reference value has been introduced which is smaller 
than the estimate of the minimum at any stage of the iteration and which is 
automatically updated as required.  The user may specify a reference value 
known to be smaller than the actual minimum.  If he does so, the process 
will probably converge more quickly, although a poor choice may increase the 
number of iterations required. 

Figure 11. Change in AF Due to Change in Independent Variable 

The iteration stops when the change in function value expected from 
the next increment to the independent variable vector is less than the 
specified tolerance. 

Thus, in figure lj^,  if the anticipated change AF due to changing the 
independent variable to T (i+^, computed at point x(i^ using the supposed 
quadratic dependence of F en 7, Is less than the tolerance, the value x(i+1) 
will be reported out as the location of the minimum, but no further isolation 
will be done. 
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2.5 AC SOLUTIONS 

This section describes the AC analysis by SCEPTRE for the following 
situations: 

Case (1)  Circuits Containing Independent Source Only 

X - AX + GV. where VT -  lE7 Jg] 

Case (2)  Circuits Containing Linearly Dependent Sources 

T 
X - AX + GV + Hu, where u - [EY JX] 

Case (3)  Circuits Requiring Time Derivatives of Independent Sources 
• ■ 

X = AX + GV + QV 

Case  (4)      Circuits Containing Linearly Dependent Sources and Requiring 
Time Derivatives of  Independent  Sources 
• • 
X  =  AX + GV + QV + Hu 

Circuits containing linearly dependent sources and requiring  time derivatives 
of both independent and dependent sources are excluded from both transient 
and AC analysis. 

2.5.1    INDEPENDENT SOURCES ONLY 

2.5.1.1    State Variable Formulation 

Consider the frequency-domain analysis of  linear time-invariant 
systems governed by the equations: 

X = AX + GV (90) 

Y = CX + DV (91) 

where 

A is an (N x N) matrix of real coefficients describing the network. 

G is an (N x NS) matrix of real coefficients relating the 
externally applied sources to the network. 

N is the number of state variables. 

NS is the number of externally applied sources. 

NE is the total number of elements in the network. 

NR is the number of outputs requested, and NR<2 * NE. 
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C is an (MR x N) matrix of real coefficients relating the 
state variables to the outputs. 

D Is an (NR x NS) matrix of real coefficients relating the Inputs 
to the outputs. 

X Is an (N x 1)  vector composed of  state variables. 

V Is an (NS x 1) vector composed of externally applied sources. 

V Is an (NR x 1) vector composed of requested outputs. 

A method which will permit multiple Inputs,  I.e., multiple penetra- 
tions, with frequency dependent magnitude and phase variation.     For steady- 
state AC analysis,  this requirement on each Individual driving function, 
l£k.£NS,  may be indicated as follows« 

Vk(t,aO  - ^  M  e Qt (92) 

where 

u.' Is frequency In radians. 

ö Is a complex quantity given by a ■ ju). 

K, (u.)  Is, In general, a complex function of frequency. 

Writing Equation (92) in vector notation we have 

V - Ke Qt (93) 

where the (NS x 1) column vector V is written as NS terms of the complex 
frequency variable o with each term having an Independent magnitude and 
phase variation given by K. 

The  solution of  Equation  (90)   is of  the form 

X = X e Qt (94) 
o 

Using Equations  (93) and  (94) we can rewrite equation (90) 

-4-  (X e at)  = A(X e Qt) + G(Ke 
Qt) 

dt      o o 

QX eQt -AXe^H-GKe01 

o o 
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and 

or 

QX - AX + GK 
o    o 

(01 - A)X - GK 
o 

Solving for X we get 

X - (01 - A^GK (95) 

The system matrix A can be reduced by similarity transformations to a 
diagonal matrix A. This is done by the EIGENP routine (.Ref. 17, 18).  The 
process Is 

A - SAS-1 

where 

\ Is an (N x N) diagonal matrix composed of the complex system 
eigenvalues, and 

S Is a complex (N x N) matrix whose columns are the system 
eigenvectors. This matrix Is referred to as the modal matrix. 

The substitution of (96) Into (95) leads to 

X - (SOS-1 - S \S"1)"1GK 
o 

X - S(0 I - A)"1S"1GK 
o 

or 

X - S(ju;I - \)"1S~1GK(u*) (97) 

Equation  (97)  represents the AC solution to the state variable equation 
given in  (90). 

Equation  (91) represents the non-state variable quantities.     The 
AC solutions for these voltages and currents are consistent with the 
transient equations given in subsfection 2.3.1, with the understanding that 
their implementation requires complex arithmetic.    The simpler equations 
below are substituted for four quantities. 

V6 " ^ ^S + W 
-5A- 
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2.5.1.2   A and G Matrix Calculations 

SCEPTRE defines the state variables as the link Inductor currents, 
13, and the capacitor branch voltages, V^.    SCEPTRE also permits both 
voltage sources,  E7, and current sources,  Jg.    This leads to the following 
definition for X and V. 

r   n 
l3 >    N, V NS 

Rewriting and partlonlng Equation (90) In an alternate matrix form 

produces: 

m m 

All A12 

A    A 
21  22 

as separate equations we have 

Gll    G12 

G21    G22 

A11 I3 + A12 VA + G11 E7 + G12 J8 

V4    "    A21 S + A22 V4 + G21 E7 + G22 J8 

The transient equations of   subsection 2.3.1 (Ref.  17, 18) were used 
In the derivation of the necessary submatrlces. 

The submatrlces A..., A. „, A., and A., for the case involving lumped, 
passive,   time invariant ?, L ana C elements are given by Equations  (98), 
(99),  (100), and  (101). 

Au - (-MLI)*B35*R55) * 

21 

[B35 - *l5 *  (MRI) * B25*R55*Bl5] 

[B34 - B35*R55*BT25*(MRI)*B24] 

(C44I)* [BJ4 *   (MSI)*B14*S44 - l] * [B*4MMRI)*B25*R55*B*5 - B^J 

A12 -  (-MLI)  *    B34 - B35*R55*Bj5*(MRI)*B24 

22 

(99) 

BT 
B35 

(100) 

(c44i) *[BJ4*(MSI)*B14*S44 - xj   *[BJ4 *(MRI) *B24J      doi) 
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where 

MLI 

MRI 

MSI 

[L33 + L36*B3T6 + B36*L63 + B36*L66*B36 ]■' 
R22 + B25*R53*B25 

Sll + B14*SA4*BU 

-1 

The subnatrlces Gn, G^t and G211 G22»  for the case involving 
Independent voltage and/or current sources,  are given by Equations  (102) 
through  (105). 

G11 -  (-MLI)  * 

G12 »   (-MLI)  * 

21 

G22  =   W   * 

[B37- 

[B35*R55*(B 

B35*R55*B25*(MRI)*B »] 
85 - B25*(MRI)*B25*R55*B8T5 

CC44I)* I  (Bj4*(MSI)*B14*S4A  -  I)*B^*(MRI)*B J 

(102) 

(103) 

(104) 

*(MSI)*B    'S,.,.   -  I)*(B0/.(MRI)*B0 *RC *BQ(:   - BQ/.) 14    44 '24 25    55    85 

(105) 

84 ■] 
2.5.2    CIRCUIVS  CONTAINING LINEARLY DEPENDENT  SOURCES 

2.5.2.1    Reduction  to Canonical  Form 

SCEPTRE permits the user to define voltage and current sources 
that are linear functions of resistor voltages and currents.    These are 
type EY and JX sources.    Let u be a vector composed o^ these sources 

T 
given by,  u    =  [EY JX].    Then a circuit containing  thise sources can be 
characterized by 

AX + GV + Hu (106) 

where H is an (N X ND) matrix of real coefficients relating the dependent 
sources to the state variables. 

ND is the number of linearly dependent sources. The problem is to 
reduce Equation (106) to canonical form, namely 

X - (AEXT)X + (GEXT)V 
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where AEXT Is an (NXN) matrix of real coefficients describing the extended 
network. GEXT Is an (N X NS) matrix of real coefficients relating the 
external sources to the extended network.  Equation (106) may be rewritten 
In the following way: 

i- 

All A12 '3 
+ 

A21 A22 .V'J 

• P ■■ 

Gll G12 E7 
+ 

G21 G22_ 
J8 

Hll H12 

H21 H22 

EY 

JX 
(107) 

By definition. 

and 

EY - k1V2 + k2V5 

JX = k3I2 + k4I5 

(108) 

(109) 

where k., k_, k„ and k, are matrices relating each dependent source to 

the appropriate resistor voltage or current on which it depends. 

yields: 
Since V2 = R22I2 and I    = G55V5  substitution into  (108)  and  (109) 

EY 

JX 

k1R22      k2 

k4G55 

(110) 

Substituting  (110)  into  (107)  gives 

LV«J 

All    A12 ' 

LA21    A22 

Gll G12l h" + 
G21 G22j LJ8. 

Hll    H12 

H21    H22 

klR22    k2 

k3 k4G55 5 

(ill) 

The vector  [Y]    =  [I?V ] can be expressed in terms of state variables 

and independent sources by observing that Y'' is a subset of the non-state 
variable outputs Y, where Y = CX + DV.    That is 

5J 

Y"    =    C'X + D^V (112) 
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However, subsection 2.3.A gives 

V ■-B24VA -B27E7  ' 

-v 
-   MRG"1 

T 
L B^l3 +B85Tj8- 

where 

MRG 

'(R22 + B2Yk1R22)   (B25 + B2Yk2) 

(-B25 " BX5Tk3)    (G55 " BX5Tk4G55>, 

therefore 

MRG 
-1 

0    -B 

RT 
LB35 

24 (113) 

and 

MRG 
-1 -B27   0 

0 '85 J 

(114) 

Using (114), (113) and (112) we can write Equation (111) in terms 

of state variables and independent sources 

V 

All    A12 

LA21     A22J   Lv4J 

Gil   G12 

G21   G22-' LJ8 

Hll    H12 

LH21   H22J 

rk1R22 k2 

k4G55J 

MRG -1 
0       -B 24 

^35    0  J 

3 
-B27     0 

0 BocT 85J  L"8J 

Collecting terms we have 
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LV4J 

All    A12 

A21    A22J 

Hll    H12 

LH21    H22 

klR22    k2 

Lk3 k4G55. 

MRG -1 
0      -B 24 

T 
B35    0 LV4. 

Gll    G12 

LG21    G22 

Hll    H12 

LH2i    H22. 

klR22    k2 

Uk3 k4G55. 

MRG -1 
-B27    0 

0        B 
85 J LJ8. 

(115) 

where Equation (115 represents a reduction of Equation   (106)   to canonical 
form as required with 

AEXT 
Ki A12" [»11 H12l klR22 

k2        1 
MRQ-1 

0 -B24] 
+ 

RT 

LB35 LA21 A22J LH21 
H22J k H G55J 0 

and 

GEXT . 

Gll    G12 
+ 

Hll H12 klR22 k2 
MRG-1 

-B27 
0      " 

B     T 
B85 J \ LG21    G22- LH21 H22- k k4G55J 0 

H Mi atrix Calc ulat ion 

Eauation  (115)  is complete except for a description of the H matrix 
which is necessary for computational purposes. 

It is easily shown that the H matrix is quite similar in structure 
to the G matrix by observing the equivalence in the following equation 

_                -, P      _ _ r 1 r -1 "7 
Gll    G12 I7 

+ 

Hll hi EY 
= 

Gll G12 Hll H12 
J8 

EY 

G21    G22 J8 
H21 H22 

JX G21 G22 H21 H22 JX 
L                         J J !■ L   J !- J "-    • 

This indicates that the G and H submatrices differ only by post- 
multiplications by terms which relate the circuit connectivity to the 
appropriate sources. 
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Thus 

G    - 

and 

(8l)     B37    +     (g2)     B27 

+    («3)     B27 

(g^    B3Y    +     (g2)     B 
2Y 

+     (83)     B2Y 

(«4>    B85 

^    B85T    +    («6)     B84T 

^    BX5 

(g5)    BX5
T    +  (g6)     BXA

T 

where 

g,    -    -MLI 

MLI   (B35 R55) (BJJ    MRI) 

CA4I(B14T MSI B14 S44 * I
)
B

24
TMRI 

-MLI(B35 R55) [I -  (B25
TMRI)   (B25 R55)] 

C44I(B14T MSI B14 S44 ' l)   (B24T MR1 B25 R55 

«6    =    -C44I(B14T MSI B14  S^ 'l) 

2.5.3    CIRCUITS REQUIRING TIME DERIVATIVES OF  INDEPENDENT  SOURCES 

2.5.3.1    Derivation of  the AC  Solution 

If  the circuit  topology Is such that a source  time derivative Is 
required In order to perform a transient analvsls  ,   then this same require- 
ment Is also imposed on an AC analysis.    However,   there is one Important 
difference.    In the AC analysis program, unlike the transient program,  the 
user is not required to supply the derivative.     The AC program automatically 
supplies the needed  information and proceeds. 

The derivatives are  treated internally as follows: 

* Independent voltage  sources  together with a capacitor  tie-set,  or 
Independent Current  Sources  together with an Inductor cut-set. 
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Let this situation be characterized by 

X - AX + GV + QV     where. 

Vk(t,a') - Kk(a,')eja't 

Then the solution of Equ itlon (116) Is of the form 

Ju)t 

Thus, 

X eJ 

o 

(116) 

-^(Xe^^     -    A(Xe^,t)    +    G(KeJuJt)    +    Q -jf- (Keja'') 
at      o o at 

J      o 
^    »    AXeja,t    +    GKeja,t    +    j^QKeJa,t 

o 

and 

(ja' I  - A)X       =    GK    +    ja'QK 

X      =     (ju-'I-A)"1   (GK + jwtQK) 
o 

Substituting our simllaritv transformation gives 

X       =    S(ja.'I  - \)'1  S"1(GK + jaQK) 
o 

X      =    S(jaa  - N)"1   [(S^GK) + j a? (S^QK) 1 
o 

(117) 

Equation (117)  represents the AC solution to the state variable Equation 
given in (116),    The second term in the brackets  represents  the additional 
computation required,  at each  frequency, due to the presence of all source 
derivatives. 

2.5.3.2    Q Matrix Calculation 

This matrix was also derived, using the differential equations of 
Section 2.3.1.    It is listed here for continuity. 

Q   = 

Qll    Q12 

Q21   Q22 
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where 

'11 

'12 

'21 

(-mi)   [B36 he  B86T + L36 B86T 

t-CUl)  B1A MSI B17 

'22 

2.5.4 CIRCUITS CONTAINING LINEARLY DEPENDENT SOURCES AND REQUIRING TIME 
DERIVATIVES OF INDEPENDENT SOURCES 

This case presents no difficulty. It is simply a combination of 
Cases (2) and (3). 

62 

■kUnttti. uL^Hi uaiei ■   .     . ;■...   x.u u... ■.: 



SECTION III 

SYSTEM OPERATION 

3.1 INTRODUCTION 

The SCEPTRE System is a  FORTRAN IV computer program written  for the   IBM 
7090/94 and 360 Data Processing Systems.    It consists of two major phases. 
The  first, called the Program Generator, creates  (on a disk or tape data 
file*)   another FORTRAN IV computer program containing circuit equations for 
electrical networks.     SCEPTRE does  this automatically,  using the  input data 
describing the circuit  to be  analyzed.    The second phase,   the Circuit  Solution 
Executive, computes the circuit response by solving these equations generated 
in the FORTRAN IV program. 

Operation of the SCEPTRE System depends upon the Monitor System,  IBSYS 
(operating system OS/360) which controls its execution.     Under control of 
IBSYS   (OS/360),  SCEPTRE executes  in two phases as separate job steps that 
are  loaded and executed sequentially.     Prior to loading,  however,   IBSYS  (08/ 
360)   performs any required FORTRAN compilation.     Programs  to be  compiled do 
not have to reside on the standard input file upon which the input data are 
stored.     Instead,  the system can be instructed, via the job control language, 
JCL to compile the load programs  from an alternate input  file.     SCEPTRE uses 
this  feature of IBSYS  (OS/360)  as  a means of linking its  two job  steps.    This 
is  illustrated in the System Flow Diagram, Figure 12. 

3.2 PROGRAM GENERATOR 

The Program Generator is an executive program that  controls  the inputting 
of  circuit description data,  generation of a FORTRAN IV subprogram for calc- 
ulating circuit response,  generation of circuit parameter data,   storage of 
circuit models on  library  files,  restart of discontinued  runs,  and re-outputting 
of  computed results.    Each of these six program tasks as well as  the Program 
Generator  (EXEC1)   are described  in  the  flow diagrams,   figures  13  through 18. 

3.2.1    CIRCUIT DESCRIPTION PROCESSOR 

The SCEPTRE circuit description language  is used  to describe electrical 
networks.    This  application-oriented  language is powerful,  easy  to  learn and 
use,   and nearly format  free.   With    it,  circuits  composed  of  fundamental 
circuit  elements and prestored circuit models can be described.     The types 
of  fundamental electrical characteristics allowed are resistance,   capacitance, 
inductance,  current and voltage sources,  and mutual Inductance.     Using the 
same  components and circuit description language,  equivalent circuit models 
of  devices such as  transistors and  diodes can be described and  stored on a 
library  file for  future use.    When a stored model is  referenced  in a circuit 
description,  it  is  located on the  specified library file and its elements 
appropriately substituted  into the  circuit being described. 

*Thls  term "file"  in this  section refers to disk or  tape file   for the 
S/360 and to a tape file for the 7090/94. 
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Often, when a model Is called out  In describing a circuit, the desired 
parameter values are different  from those originally specified.    Rather than 
permanently change the stored model,  the SCEPTRE circuit description language 
allows model parameter values to be changed when model element substitution 
takes place. 

3.2.2 MODEL EDITOR 

Using the SCEPTRE circuit description language, circuit models const- 
ucted  by the user can be stored on a model library file by the Model Editor 
program. One permanent library file and one temporary library file are 
provided for storing models. Circuit models may be an arbitrary n-terminal 
configuration of the allowed fundamental circuit elements. Any model so 
described can be stored on either library file using the Model Editor Program. 

3.2.3 CIRCUIT EQUATION CENERATOR 

After  the description of the circuit  to be analyzed has been reconstructed 
in memory of  the Circuit Description Processor,   the FORTRAN IV sub-program called 
SIMUL8  is  created.     It contains D-C steady-state,  transient,  and/or AC solution 
equations,  depending on the type of analysis  requested by the user.     These 
equations  are based on the formulation presented  in Section II of  this report. 
The SIMUL8 program is written on an output  file   (PROGRAM SAVE TAPE)  and stored 
until  the second phase of SCEPTRE operation, when it will be compiled and 
executed. 

3.2.4 DATA GENERATOR AND RERUN PROCESSOR 

Essentially the SIMUL8 program contains only the circuit equations for 
the network under investigation. The parameter or component values of the net- 
work are stored separately as input data to the SIMUL8 program. The Data Gen- 
orator program organizes and stores the circuit data on the PROGRAM SAVE TAPE. 

Once a circuit has been described to SCEPTRE,  multiple or repeated 
circuit solutions can be run by changing parameter values between runs.  The 
circuit description language is used to specify the number of repeated runs, 
each known as a rerun, and the changes in parameter values desired for each 
rerun. The Rerun Processor interprets and processes this information.  The 
Data Generator then creates and stores one block of circuit data for each 
rerun on the PROGRAM SAVE TAPE.  Since only parameter values are changed between 
reruns (i.e., no topological changes), the SIMUL8 program containing the original 
circuit equations is simply re-executed during the solution phase using the data 
created for each rerun. 
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3.2.5 CONTINUE PROCESSOR 

The Continue Processor allows previously terminated transient solution 
runs to be restarted and continued.  In addition. It Is necessary that the 
PROGRAM SAVE TAPE from the original transient solution run be available. 
This file contains, in addition to the SIMUL8 program, all of the parameter 
values and data required to continue the transient solution. The Continue 
Processor also allows certain run control parameters to be changed and used 
for the continuation of the original transient run. 

3.2.6 RE-OUTPUT PROCESSOR 

The SCEPTRE user may wish to re-create both the printed and plotted 
outputs for a particular transient analysis run.  This can be done, providing 
the OUTPUT SAVE TAPE is saved from the original solution run, by using the 
Re-Output Processor.  Several changes in the output can be made during a Re- 
Output run.  For example: 

- Output labels can be changed 

- New quantities can be plotted 

_ The order in which output quantities are printed out and plotted 
can be changed 

- Printing and plotting of output quantities can be suppressed. 

3.3 SOLUTION EXECUTIVE 

In the second phase of SCEPTRE operation, the FORTRAN IV sub-program 
SIMUL8 is compiled and executed. During this job step, 1BSYS (OS/360), is 
instructed to read the SIMUL8 program from the PROGRAM SAVE TAPE, compile it, 
and then link edit it along with the other required programs. 

Execution commences, as shown in figure 18 with the reading of the run 
control parameters from the PROGRAM SAVE TAPE.  Then the SIMUL8 program is 
called.  It reads the remaining circuit parameter values stored on the PROGRAM 
SAVE TAPE and then enters the circuit solution equations. The circuit equations 
are solved, thus computing the state-variable derivatives.  Calling the selected 
numerical integration routine then produces new values of the state variables tor 
the next time step.  At the conclusion of each successful integration step, the 
requested output quantities are buffered in memory. When the buffer is full, 
it is written on the OUTPUT SAVE TAPE as binary data.  After the circuit solution 
is complete, control is returned to the Solution Executive Program, whereupon the 
contents of the OUTPUT SAVE TAPE (computed results) are re-formatted in lists and 
graphs and stored on the SYSTEM OUTPUT TAPE for peripheral processing. 

If any reruns were requested, control is then returned to SIMUL8 for re- 
execution of the solution pt'ase and subsequent outputting. This recycling is 
continued until all circuit reruns have been processed. 
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At the conclusion of each transient solution,  the critical parameter j 
values and data are stored on the PROGRAM SAVE TAPE.    Thus,  if the file is 

.1 

saved at the end of the run, the solution can be continued at some future time. 
Use of the Continue Processor allows previously terminated solution runs to be 
restarted and continued with changes in the run control parameters. 

Transient solution runs may be terminated or simply saved by the computer 
operator by depressing sense switch No. 6 on the 7090/94 console, or by 
appropriate changes to the Data Definition (DD) cards on the S/360. (See 
subsection 7.4.3.2 of Volume I). Using this feature, a PROGRAM SAVE TAPE 
could, for example, be generated every 15 minutes on long running transient 
solutions, eliminating the need for repeating previous calculations in the 
event of an abnormal run termination. 

If, at the conclusion of a transient analysis run, the OUTPUT SAVE TAPE 
is saved, the Re-Output Processor may be used to reproduce lists and graphs 
of any of the circuit quantities originally requested for output.  In addition, 
graphs of variables plotted against variables other than time which may not 
have been requested originally can be conveniently produced. 
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SECTION IV 

SPARSE MATRIX TECHNIQUES 

A very common operation  that is performed in many aspects of scientific 
digital computation is  solution of the system 

A x (118) 

where A is a coefficient matrix, b is a known vector of forcing functions and 
x is the vector of unknown quantities to be determined. Conventional techniques 
have of course long been known. Gaussian elimination or Gauss-Jordon methods 
are standard in most numerical analysis texts. The need for Improvement becomes 
evident however when A becomes large.  If A is of order n, these methods require 
a little more than n^ words of core storage. When n = 100, more than 10,000 
words ui  core are committed to this operation alone. Yet the larger A is, it 
is usucily true that the percentage of zero elements, or sparseness, increases. 
A sparseness of 90 percent is not unusual when nrlOO. A sparse matrix technique 
then, can reasonably be defined as any method that takes advantage of the 
inherent sparseness of an often used matrix to perform computation with some 
significant saving of storage and sometimes even solution time. 

The most pressing need for some type of sparse matrix technique in SCEPTRE 
occurs in the DC algorithm.  The nature of the mathematical formulation is such 
that the A matrix corresponding to Equation 118 is equal in size to the number 
of network resistors plus semiconductor devices. Experience has shown that 
the largest A matrix that could be solved within 200K bytes in the System/360 
was about 120 x 120.  This problem caused some runs to fail u at otherwise 
could have been easily accommodated. 

The specific method that was implemented is based upon triangular de- 
composition (Ref. 17).  If A~l exists, then A can be decomposed as 

LU (119) 

where L is a lower triangular matrix and U is an upper triangular matrix as 
shown below: 

*11 

^21 hz 
631 

^nl 

Ä32 ^33 

Jn2     ^.3 

0 — 0 

0 — 0 

-  0 

nn 

U= 

1 ^2 U13 
__ Uln 

0 1 U23 
— 

2n 

0 0 1 — u. 

0 0 

3n 

The matrices L and U can be generated from the original A matrix by use of the 
recursive relations 
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q-l 

£iq " aiq  "      2.   lik    ^ with   ^„ " 0   for  i<q 
k-1 

/ 
u  ,  ^ i 3 i   - 

\ k-l 

p-1 

^ Äpk    "kj     /Äpp        with u      =0 for p>j 

u  , a 1 for p * j 

Once L and U have been generated, solution may proceed In a straight forward 
manner. Since the basic problem can be written In the form of Equation 118 
where vector X represents the unknowns, then substitution of Equation 119 In 
118 gives 

L U X = b (120) 

Define 

Y = U X (121) 

which transforms Equation 120 to 

L Y = b (122) 

Equation 122 Is In a form suitable to solve for Y by a simple front substitution 
process.  Once Y Is known. Equation 121 can be solved by back substitution to 
arrive at the desired system unknown X. The attractiveness of this method is 
that it lends itself to an indexing scheme that can work with only nonzero 
elements of L and non-zero off diagonal elements of U.  If A is large and 
sparse, a significant storage advantage can be realized. 

The new sparse technique was tested on two circuits that were tar larger than 
could have been handled with the existing method within 200K bytes of core. 
The first circuit was composed of 200 resistors and semiconductor junctions 
and the resulting A matrix was well over 90 percent sparse. Accurate convergence 
was obtained in seven passes.  The second circuit contained 290 resistors and 
semiconductor junctions and a check of the A matrix revealed over 95 percent 
sparseness. This circuit also converged accurately in seven passes. If this 
same network was solved with the conventional technique, approximately BOOK 
bytes of core storage would have been required. A series of smaller networks 
were also solved with the sparse technique and in every case the solution 
converged to the same result in the same number of passes as did the existing 
method. 
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Since this method is attractive for large A only,  it has been programmed 
into SCEPTRE such that it becomes operational for networks containing 70 or 
more elements with DC analysis requested.    The conventional Gauss-Jordan 
technique will continue to be used for smaller networks.    The sparse technique 
will also be applied to the transient portion of the program for the solution 
of larger problems.     It is clear that this technique is a necessary prerequisite 
in eventually permitting the analysis of very large circuits. 
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SECTION V 

ASSEMBLER LANGUAGE  INPUT/OUTPUT  (I/O) 

SCEPTRE was originally written  in  FORTRAN  IV on the  7094 Computing System 
and was  later converted to OS/360 FORTRAN IV  (H-level,  Optimization =2).    The 
decision to program in FORTRAN  facilitated conversion of  the program for use on 
other  computing systems;  but  it  also resulted  in  increased CPU time  requirements 
for  the     '^tup phase.     In an effort to reduce this  time requirement  it was deter- 
mined   O.UL FORTRAN I/O accounted  for more than 50 percent of  the  total CPU time 
used,  particularly  for small problems.     Since the CPU requirements  for assembler 
language  I/O is at least  80% less  than that required by FORTRAN  I/O with FORMAT, 
the FORTRAN I/O was replaced with assembler language I/O with  the exception of 
output directed to  the printer.     The  implementation of assembler language I/O 
into  the setup phase and the  resulting improvements are discussed in  the follow- 
ing paragraphs. 

Three assembler language subroutines were written to perform the  functions 
of  the FORTRAN I/O statements  READ,  WRITE, and ENDFILE.     These subroutines 
utilize GET and PUT  assembler  language  instructions  to perform the  I/O.    Since 
these  subroutines  transfer data to and from core storage in blocks of 80 bytes 
(characters),  the logical record lengths  ind the record  formats  for  the affected 
data sets must be 80 bytes and  fixed block  'FB),   respectively.     The physical 
record lenj; .hs  (i.e.,   BLKSIZES)   can be any uultiple of 80.     The  technique of 
selecting the proper data set  for transferral of data is via  the DDNAME of the 
data set.    An eight  character DDNAME  for each data set  is  initialized in the 
BLOCK DATA subroutine.     The DDNAMEs used are as shown in  the SCEPTRE Program 
Control Deck in Volume  I,  Figure 81.     If  for some reason  the user desires 
different DDNAMEs,  he need only make the appropriate changes  in BLOCK DAT\ 
and his SCEPTRE Program Control Deck.  No reformatting of  tne  I/O is performed 
by  the  assembler language subroutines  unless  the amount of  data to be trans- 
mitted is  less  than 80 bytes.     In  this  case,   the remainder of the record is 
padded with blanks. 

The implementation of assembler language I/O did not  require an extensive 
programming effort  to  reformat  the  I/O data.    Much of the I/O of  the setup 
phase  involves  reading    and writing data where the  core  storage  and data set 
representation are both character format.    Conversion to a character format 
and vice-versa was necessary  for  the data where the core storage  representation 
was  integer or real constants.     This includes circuit data stored  in  the pro- 
gram save data set and indices  in  the model library data sets.     The  reformatt- 
ing of  this data was  performed by  FORTRAN subroutines. 
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An effort was made to ensure that the addition of the assembler language 
I/O would not complicate the task of converting the SCEPTRE/360 System to 
other computers.    All replaced FORTRAN I/O statements and  their associated 
FORMAT statements were made comments and left In the programs.    To assist In 
the Identification of these statements,   the character "X" was also added In 
column two of the commented statements.    Most of the I/O conversion effort 
only requires that the calls to the assembler language routines and the 
characters "CX" from column 1-2 of the FORTRAN I/O statements be removed. 
Other statements to be deleted can be easily Identified. 

The results of the Improvement In  the execution speed of the setup phase 
are shown In table  !"■    The Improvement was 60 to 75 percent  for small problems. 
Although the Improvement was only 30 percent for the large problem there was 
a significant reduction in total CPU time.    As shown In table VI  the timing 
tests were runs made on an IBM System 360 Model 65 computer.    The finished 
product will appear transparent  to the user in that the I/O data itself will 
retain its usual format. 

TABLE IV' 
TIMING TESTS OF THE SETUP PHASE 

USING FORTRAN  I/O AND ASSEMBLER LANGUAGE I/O 

Test Circuit 

CPU Time Requirements for 
the Setup Phase (seconds) 

FORTRAN 
I/O 

Assembler 
Language I/O 

Example 1 from SCEPTRE 
User's Manual 11 5 

Example 2 from SCEPTRE 
User's Manual 24 9 

Example 3 from SCEPTRE 
User's Manual 23 6 

Example 4 from SCEPTRE 
User's Manual 11 5 

221 Element Circuit 
(Transient Solution 
Only) 90 62 
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APPENDIX A 

IMPLICIT INTEGRATION IMPLEMENTATION 

A.l  INTRODUCTION 

Two basic factors are Involved In the amount of solution time required 
to complete any transient problem; the number of steps or solution increments 
needed and the amount of computation required per step.  The first of these 
factors is controlled entirely by the type of numerical integration method 
that is used to integrate the system of differential equations generated. 
This system can generally be expressed by the matrix equation: 

Y = AY + BU, (1) 

0 
where Y is the vector of state variables, Y is the vector of state variable 
derivatives and both A and B are appropriate coefficient matrices. 

It is well known that the step sizes that can be taken by all explicit 
numerical integration methods are limited by the largest system eigenvalue. 
This limit is often referred to as the stability radius,and it differs from 
method to method. For example, if |\m | is the absolute value of the largest 
eigenvalue of A in Equation (l)i then for most well known explicit methods 

hm ^  X_ (2) 

where hm is the maximum step size that may be taken.    If larger steps are taken, 
the solution will begin to oscillate.     The quantity X in Equation (2)   is equal 
to  1  for Euler's method,  2  for the explicit  trapezoidal method,  2.78  for Runge 
Kutta and 6  for TRAP 2 wh-!ch is  currently an optional choice in SCEPTRE.    No 
constant value for X can be given for XPO, but it too has a stability limit. 
If     | X m I   is large for any network.  Equation (2)  will force a small step size 
and therefore require that many solution steps be taken with an attendant rise 
in computer solution tine. 

There has been a recent trend in mathematical literature toward integration 
methods  that do not exhibit  the limitation inherent  in Equation(2).   A generalized 
form of these methods can be given as 

' 'S    'iVl    +hl   blYn n+1 Z.       i    n-i Z,      1    n-i. (3) 
1=0 i=-l 

where the Y and h quantities remain as previously defined and the a and b 
quantities are usually, but not necessarily, constant.  Multistep methods are 
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Introduced if Index PjfO. The simplest derivative form of Equation (3) occurs 
if coefficients a. ■ 1, b  »I and all others are set equal to zero. We then 
have 

Y ,. - Y + h Y x1 (A) 
n+1   n    n+1 

which is commonly referred to as the implicit or backward Euler technique. 
This technique can be shown to be unconditionally stable, and has given marked 
speed advantages over all of the explicit methods in SCEPTRE whenever the 
latter has been affected by the limitation implied in Equation (2)  A major 
disadvantage of this particular method lies in its inaccuracy for some types 
of problems.  Implicit or not, it is still a first order method and tests 
have indicated that both XPO and RUK can be considerably more accurate.  The 
next well known variant of Equation(3) is set up if coefficients a- = 1, 
b , =0.5 and all others are set to zero.  This choice sets up 

u   0     u 
Y =Y+--Y+— Y 
n+1    n  2  n  2  n+1, (5) 

a method called implicit trapezoidal integration. This method is considerably 
more accurate than the first order variety, but has lost the quality of 
unconditional stability.  Under some computation circumstances oscillations 
can occur and render the analysis suspect.  Therefore, after considerable 
testing and consultation with the Air Force Weapons Laboratory, it was decided 
to implement a multistep (Ref. 8,9) version of Equation (3) that automatically 
chooses l^Ps6. A good deal of testing has been performed on this implementation 
and the resultant conclusions are given in the following paragraphs. 

A.2 MANUAL EXAMPLE 1 

The first practical network to be run on SCEPTRE with implicit integration 
was example 1 in the SCEPTRE manual Vol. I, Section 4.1. This particular net- 
work contains a significant spread in eigenvalues due to the small transistor 
capacitors and the larger load capacitor.  A master run with two associated 
reruns was made and a summary of the number of integration steps and passes 
required by both the original explicit method and the new implicit method is 
given in Table IV.  Since this network did exhibit a significant spread in 
eigenvalues, the implicit results were much faster. No practical difference 
in accuracy was noted in any part of the runs. 

Note:  Large Eigenvalues can inhibit the step size and small Eigenvalues can 
make a large problem duration necessary.  Therefore it is the spread 
in Eigenvalues that often causes difficulty for explicit integration 
methods. 
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TABLE    A-l 

COMPARISON OF EXPLICIT AND  IMPLICIT INTEGRATION 
ON  EXAMPLE 1 

Explicit Implicit     j 

Passes Steps Passes Steps  i 

■  Master 

First Rerun 

Second Rerun 

6441 

6065 

5972 

3049 

2867 

2832 

291 

480 

255 

126 

155 

112   i 

A.3     A PRACTICAL  ILLUSTRATION 

The next network to be discussed delves a bit more deeply  into  the 
practical situation that gives implicit  integration an advantage over 
explicit  integration.     Consider the circuit in Figure 19  in which a two- 
stage  transistor circuit drives a large capacitive load.    Let  the equivalent 
circuit  component data be such that  the  emitter and collector capacitances 
are 

C    = C      +6    T    J 
E te        nee 

C    =  C..    +  6, T    J 
C        tc        i    s    c 

(6) 

(7) 

where 

C    *    =    emitter  transition capacitance = 3 pf 
te 

C    *    =    collector  transition capacitance = 3 pf 
tc 

n 

ei 

T 

=    30 V 

-1 
=    35 V 

=    0. 2 ns -« f Q = 800 mc 

=    5 ns 

=    forward emitter junction current 

=    forward collector junction current 

The  transition capacitances are assumed  to be constant here, 
does not  affect the point of the discussion. 

This  simplification 
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+ 10V 

-T* CL = 2/iFd 

Figure 19. A Practical Illustration 

If the input signal contains high frequency components,or if the performance 
of the individual transistor stages are of interest, the user cannot "cheat" 
on the equivalent capacitor values. The available component data must be used 
in Equations (6) and (7) even if these lead to very small values of capacitance. 
On the other hand the values used for RL3 and CL lead to an output time constant 
of 2 ms which in turn requires a problem duration of about 10 ms if the entire 
transient is to be observed. The familiar eigenvalue spread has been created. 
When this problem was solved with explicit integration (SPO), 10,000 passes 
were required to get to a problem time of 58,000 ns - far short of the required 
duration.  Solution with the new implicit method covered the entire transient 
in 520 passes.  With this data one can claim an improvement factor of 3260. 
This is based on a factor of 19.2 fewer passes to achieve a problem duration 
of another factor of 170 greater. Entire papers have been written that were 
based on statistics like this. 
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The same network can be used to illustrate that there Is still a future 
for explicit integration.    If components RL3 and R^ are removed from the 
network,  so is the large time constant and any need to run the problem for 
anything like 10 ms.    In fact,  100 ns  is more than sufficient to cover the 
entire transient period.    What has been done In effect is to remove the 
large spread in eigenvalues.    This change in computational circumstances 
also changes  the relative efficiencies of the integration methods.     Explicit 
integration now completes the problem in 297 passes while implicit requires 
409 passes.     Without an eigenvalue spread,  the implicit method has  lost Its 
large speed advantage and has become about 40 percent slower. 

The complete input listing of the circuit of Figure 19 including the 
model description is given on the next page.     It is interesting to note that 
the Rerun mode may be used to easily perform comparisons between implicit 
integration and explicit XPO. 

A.4    EIGENVALUE SPREADS 

A series of runs and reruns were made in order to gather comparative data 
on the performance of XPO and the implicit method as a function of selected 
eigenvalue spreads.    This information  is summarized in Table A-H.    With a small 
spread of ten,  it is seen that implicit takes more solution passes than does 
explicit - hence an improvement factor of less than unity.    As the spreads 
of eigenvalues are progressively increased,  implicit integration becomes 
comparatively more attractive,and the trend would become more marked if the 
spread sequence had been continued on. 

The forcing function used in all runs was a 1 V step function in order 
to avoid complicating effects from that direction.    If more complex forcing 
functions were used, it is likely that  the improvement factors that are listed 
in Table III would be modified and in some cases quite significantly.    Since 
this is  true,  the listed factors should be considered to be valid only as an 
approximate guide that illustrates the potential of implicit integration 
under favorable circumstances. 

TABLE A-1I 

EXPLICIT-IMPLICIT COMPARISON AT 
SELECTED EIGENVALUE SPREADS 

j      Eigenvalue Explicit 
j           Spread (XPO) Implicit Improvement      1 
|    (approximate) Passes Passes Factor             I 

1                     10 
113                          146                          0.77 

100 237 171 1.4 
iono 703 180 3.9 

10000 1807 190 9.5 
100000 

10° 
6664 184 36.0 

16578 185 90.0 
107 *20000 193 238.0 
108 *20000 189 996.0 

*The last two runs were not carried through the complete transient      1 
solution, but were terminated by the program pass limit.     The 
improvement factors for these runs include an extrapolation term        | 
that is based on the portion of the run that was not completed.           | 
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MODEL DESCRIPTION 
MODEL ZZ (TEMP) (B-C-E) 
ELEMENTS 
RB,B-X=.3 
RC,C-Y=.015 
CE,X-E=X1(3.+6.*JE) 
CC,X-Y=X2(5.+175.*JC) 
JE,X-E=DI0DEQ(l.D-7,30.) 
JC,X-Y=DI0DEQ(l.D-7,35.) 
JX,Y-X=.98*JE 
JY,E-X=.1*JC 
OUTPUTS 
VCE.VCC.PLOT 
CIRCUIT DESCRIPTION 
TWO STAGE CIRCUIT WITH LOAD 
ELEMENTS 
E1,1-2=TABLE1 
RBI ,2-3=2 
Tl,3-4-5=M0DEL ZZ 
E2,1-4=10 
RL2,4-7=.5 
RE,1-5=.2 
RB2,5-6=.5 
T2,6-7-l=M0DEL ZZ 
RL3,7-9=1 
CL,9-1=2E6 
OUTPUTS 
VCL,XSTPSZ,PLOT 
RUN CONTROLS 
RUN INITIAL CONDITIONS 
INTEGRATION ROUTINE=IMPLICIT 
STOP TIME=1E7 
FUNCTIONS 
TABLE1 
0,0, 50,5,  100,5 
RERUN DESCRIPTION 
RUN CONTROLS 
INTEGRATION ROUTINE=XPO 
MAXIMUM INTEGRATION PASSES=10000 
END 
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A.5    JACOBIAN CONSTRUCTION 

The need  for a Jacobian, or matrix of partial derivatives, arises  In the 
derivation of the  corrector Iteration of  the Implicit Integration method that 
has been Implemented.    This need Is  common to all Implicit methods, both 
single step and multlstep.    An m dimensional generalized form of the Jacobian 
appears In Figure  20.    Two different philosophies exist concerning the most 
efficient method of  forming this matrix.     The  first  Is based on a symbolic 
approach In which each element of the Jacobian  Is  set up In terms of  the  literal 
R,  C,  L and  G components that constitute a given problem.     Its advantage  lies 
In the fact   that  the matrix can be constructed just once and updated as  often 
as required  depending on the progress of  the  solution.    Furthermore,   the  up- 
dating process  Is  just a simple matter of  data insertion without  any need  to 
recompute  the system derivatives.     When large problems are encountered,   sparse 
matrix techniques  can be applied without  difficulty.    The disadvantage  is 
that  some combinations of topologies,  dependencies,  and element values  are 
encountered  such that  the Jacobian that  is  constructed this way is significantly 
in error.     In  these cases  the average solution step size that can be  taken is 
sometimes significantly reduced and  inefficient operation can result. 

ill 

o  m 
c»Y, 

(Y       ...   Y       t) 
i m 

(v m 

aFi 
dY 

m 

m 
BY 

m 

CY 
1' m 

(Y1,   ...   Ym.   t) 

Figure  20. The General Jacobian 

The second method is purely numerical  in nature and can be referred  to 
as "numerical differencing".     It produces  an approximation to the desired 
partial derivatives  as  indicated in Equation   (8).    These approximations  are 
made by making m 

äY. 

Y' 
i  (Y 

1' _mit 

0 

)-Yl (Y 
1' 

V - Y. 
J 

m,t (8) 

additional derivative computations each time the Jacobian is to be updated. 
The advantage of this approach is that it is universal in that theoretically 
it should produce a good approximation to the true Jacobian for any transient 
problem.  Its principal disadvantage is that it requires additional solution 
passes. The number of additional solution passes will be equal to mX where X 
is the number of Jacobian evaluations required during the course of a given 
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problem.    A second dlsadvantase is that this method does not readily lend 
itself to the use of the L-U decomposition sparse matrix technique that is 
used in the program. 

The program will automatically choose between the two methods of Jacobian 
construction.    The procedure that is  followed  is to categorize all the transient 
problems that are  to be solved with implicit  integration into three groups 
according to the number of state variables contained, m. 

Group 1 - m ^ 10 

Group 2 - 10< m <:50 

Group 3 - m >50 

The program default is set to use the numerical approach for Group 1 
problems.    The reason for this is th" both of the disadvantages of this 
approach  (m X extra derivative evaluations and additional core requirements) 
are greatly minimized for small problems.    Exactly the converse is  true for 
Group 3 problems so the default choice then becomes the symbolic approach. 
When the medium size problems represented by the Group 2 classification are 
encountered, a series of checks will be made.     These checks will examine the 
problem for topological conditions  that could  lead to error as '•"•• the 
presence of user supplied differential equations.     If any of > ics are 
positive the numerical approach will be taken.     If not,  symbc' , action 
of the Jacobian will be used. 

A method has also been provided to allow the user to specify  '..;« type of 
construction to be used which will bypass the default mechanism.    If either 
the numerical or symbolic approach is desired the respective entry under RUN 
CONTROLS is 

USE DIFFERENCED JACOBIAN 

USE SYMBOLIC JACOBIAN 

A.6    PRESET STEP  SIZE CONTROLS 

The explicit integration routines in SCEPTRE have preset quantities 
that control the maximum, minimum, and starting step sizes.    These are 
identical for all of the explicit methods and  are as follows: 

MINIMUM STEP SIZE = 1 x 10~5 (STOP TIME) 

MAXIMUM STEP SIZE = 2 x 10~2 (STOP TIME) 

STARTING STEP SIZE = 1 x ID"3  (STOP TIME) 

The preset quantities have been found to be Inappropriate for implicit 
integration and have been replaced with the  following: 

MINIMUM STEP  SIZE = 1 x 10 (STOP TIME) 

MAXIMUM STEP SIZE = 2 x 10~2     (STOP TIME) 

STARTING STEP SIZE - 1 x ID"8  (STOP TIME) 
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Any of these may be replaced with a different constant at the discretion of 
the user with a simple entry under RUN CONTROLS. This format Is 

MINIMUM STEP SIZE - number 

MAXIMUM STEP SIZE - number 

STARTING STEP SIZE » number 

The error control differs most markedly from that used for the explicit 
methods in that the estimated error is not computed and checked for each 
individual differential equation; but is computed and checked for all of 
the equations together just once each step.  If a given problem consists of 
m state variables, the following relation is computed at the end of each 
integration step: 

D = 

where the El terras designate local error estiraates  for each differential 
equation and  the Yi are the state variables with 0<iam.     The step is 
accepted if 

D <: g    *MINIMUM ABSOLUTE ERROR 

where g is a constant that depends on the current order of the integration 
method and MINIMUM ABSOLUTE ERROR has a preset value of 0.001.    The nomenclature 
notwithstanding,   this is a relative error control since the magnitude of  the 
state variables  enter the computation. 

Some testing has been performed to determine the effect of other values 
for MINIMUM ABSOLUTE ERROR.    No significant  improvement was found in the 
Inevitable speed-accuracy tradeoff.    What was  found however, was that larger 
values which lead to significant speed improvements did so only at the cost 
of unacceptable degradation in accuracy.    The user is  free to experiment 
along these lines by entering under RUN CONTROLS,  MINIMUM ABSOLUTE ERROR - 
number.    The remaining error criteria (MAXIMUM ABSOLUTE ERROR, MAXIMUM 
RELATIVE ERROR and MINIMUM RELATIVE ERROR)  will have no effect on the implicit 
Integration method. 
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APPENDIX 3 

B MATRIX DERIVATION 

The derivation of the general B matrix that expresses link voltages  In 
terms of tree branch voltages and tree branch currents In terms of link 
currents  Is as  follows: 

Two fundamental  Incidence matrices  that arise from network topology 
theory will be called the Q and T matrices here.     The fundamental cut set 
matrix, Q =  [qij]   is a matrix containing  (n-1)  rows and b columns for a net- 
work containing n nodes and b elements,  where: 

q. .  - +1  if the  1      fundamental cut set direction coincides with the 
reference direction of the jth element 

q,.  = -1 if the 1      fundamental cut set direction is in opposition to 
the reference direction of the j      element 

q..  = 0 if the 1      fundamental cut  set does not Include the j      element 

If the elements are properly ordered,  it  is always  true that 

Q -     [-BT      U] 

where the columns of the unit matrix U correspond to the tree branch elements. 

The  fundamental circuit matrix, T =  [tij]  is  a matrix containing m rows 
and b columns  for a network containing m Independent loops and b elements, 
where. 

I . ,  =■ +1 if the 1th independent loop direction coincides with the 
reference direction of the J*1" element "lj 

tjj = -1 if the i^h independent loop direction opposes the reference 
direction of the j^1 element 

tji = 0 if the  i^1 independent loop does not  Include the jth element 

If the elements are properly ordered,  it is always  true that 

T =   [U    B] 

where the columns of the unit matrix U correspond  to the network links. 
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Since It Is always true that 

QIb - 0,  T Vb - 0 

direct substitution yields 

[-'"][:;.]•- H[y 
Expansion of  these relations gets 

^B a BT     h    and VL "  -B VTB 

so that  the tree branch currents may be expressed In terms of  the link currents 
and the  link voltages may be expressed In  terms of the tree branch voltages 
through  the B matrix. 
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APPENDIX C 

DIODE REPRESENTATION IN THE INITIAL-CONDITIONS PROGRAM 

The current in a diode or transistor Junction at a point on Its voltage 
vs. current (V/l) characteristic may be separated Into two components as 
J - GjV +Q.  Consider the typical diode curve below. 

CURRENT, J 

VOLTAGE, E' 

Angle   0.= angle ao Is enclosed by the slope of the diode characteristic 
at any point and the horizontal at that point.    E*   Is an offset voltage that 
marks the Intersection of a continuation of the slope Gj and the line J = 0. 

From the figure: 

tan a^ = tan «2 * GJ a V—^"T1" 

or J = GJ VJ " GJ E' 

or J = G    V    + Q If Q Is defined as -GjE' 
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APPENDIX D 

BASIC NEWTON-RAPHSON METHOD 

Given a single algebraic or transcendental equation of the form F(x)  ■ 0, 
that Is single valued and dlfferentlable in the domain of interest,  a Newton- 
Raphson procedure can be constructed using 

F(x) +      dfW     Ax = 0 
aF(x0) 

An initial x = XQ may be assumed and F(XQ),      —5      determined. 

-F(xo) 
Then   Ax =    0w—r—   and x,  = x   +   Ax 

9F(x0) 1        o 

The procedure is repetitive until 

IF (W -^v) I <z 

where z is some specified convergence criteria.   When   this last relation is 
satisfied,   the process is said to have converged.    Extension to systems of 
equations adds no  complications. 
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APPENDIX E 

EQUIVALENCE OF EQUATIONS (72) AND (72') 

To show the equivalence of equations (72) and (72*), It will be 
sufficient to show that 

-[Z] 
-1 

Fl (V9, V2. V5) 

F (V V V ) 
2 ^9,  2, V5; 

F3 (V9> V2, V5) 

-1 
= [Z] 

-B97 E7 

B95  + B05 

-B27 E7 

T '•1 Q9 + B85  Js 

or 

■[z]"1^ 

-B97 E7 

-B27 E7 

[^sHs^ B95T+B05Toh9 + B85 % 

F (V V V ) 
1 V 9, 2, 5 ' 

F (V V V ) 
2 ^9, 2, 5 ; 

F  (V V  V ^ 
_ 3 V 9, 2,  5;J 

or 

[Z] 

-B97 E7 

"B27 E7 

J
B
95
T
 
+
 
B
05

TQ
1 lB95T + B05TQ|Q9 + B85Tj8 

■Fl (V9.V2. V5) 

F2 (V9.V2. V5) 

F3  (V9.V2. V5) 

The left side of the equation expands Into 

-[■ 

V9 + B95 V5 

V2 + B25 V5 

T      T 
B95  + B05 •] G99V9    " B25 G22V2 + G55V5 
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and the right side, upon substitution of equations  (65)  through (67) becomes 

V9 + B95 V5 

V2 + B25 V5 

; [B95T + B05TQ] B95T + B05Ta|  G99V9 " B25TG22V2 + G55V5 

which shows the equivalence. 
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APPENDIX F 

ADJOINT NETWORK FOR SENSITIVITY 

A number of papers  (Ref.  10, 11) have been written on determing the un- 
normalized sensitivity  (I.e., partial derivatives)  of network functions with 
respect to network elements by an adjoint network.    To  find the sensitivity 
of any network function by this method,   two analyses are required, one of the 
given network and the other of the related adjoint network.    This appendix 
describes the generation of the adjoint network for DC calculations In SCEPTRE. 
A detailed derivation of  the adjoint network for sensitivity Is given In 
References  (10) and  (11).     Due to the sign conventions followed In SCEPTRE, 
the terms given In tables F-I and F-II differ.   In sign,   from those given by 
Director and Rohrer.     (Ref.   10,  11) Table F-I describes the relation between a 
given network and its related adjoint network.     It also describes the allowed 
dependent variables   (network functions) and Independent variables (network 
elements).    Table F-II describes the forcing functions for the adjoint network 
and the sensitivities.    The superscript "a" in the tables indicate the currents 
and voltages in the adjoint network. 
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Secondary current sources In the given network Introduce voltage 
dependent voltage sources in the adjoint network (shown in Table F-I). 
This requires modification of the Jacoblan. Derivation of the modified 
Jacoblan follows. Let us classify the voltage sources, arising in the 
adjoint calculation due to secondary sources (10's) in the main circuit, 
as ED's. 

The B matrix from the L tree which includes the E^, 3 is as shown below. 

Class CA Class R5 Class L6 Class E7 Class E 

Class C B14 B15 B16 B17 B1D 

Class R. 0 B7.5 
B26 B27 B2D 

Class L- 0 0 B36 B37 B3D 

Class J_ B84 B85 B86 B87 B8D 

Class J_ B9A B95 B96 B97 B9D 

Class J^ V B05 
B06 B07 B0D 

The following equations arise from the above B matrix if vectors Vg, 
V„, I,, I. and submatrix B0, are assumed to be zero. These assumptions 

are based on the known final values of V,, V-, I. and I. for the Initial 
6  3  4     1 

condition problem and on the absence of any current-source and capacitor 
cut sets. 

h - ^5l2 -  B85J8 " B95J9 " 4^ = 0 (1> 

V2 + B25V5 + B27E7 + B2DED = 0 (2) 

V9 + B95V5 + B97E7 •f B9DED = 0 (3) 

To express Equation (1), (2) and (3) In terms of V-, V«, V-, Jg 
and E7 the following equations are required. 

I5 - G55V5 (4) 

I2 - G22V2 (5) 
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J9 " G99V9 + % 

J0 " QJ9 

(6) 

(7) 

For the definition of G__, G.., a. GAQ and Qg, see subsection 2.4.1. 

Two more equations required for complete derivations are (8) and (9) below. 

E- Q VJ 
D      o (8) 

where a    is the diagonal matrix whose (1,1) element is the non-zero entry 

of the 1  row of  (Equation 7), i.e. it is the coefficient of the Jq on 

which the 1  JL depends. 

The absence of any current-source cut set In the given circuit makes 

(9) 

B.- equal to zero.    This gives 

VJ0 + B05V5 + B07E7    '    0 

Frcm Equations CD through  (9), we get... 

G55V5 " B25G22V2 " B85J8 "  tB95 + 4   Q ]   tG99V9 + Q91  " 0 

V2 + [B25 - B2D   Q*305]V5 + [B27 " B2D   a*B07lE7 = 0 

V9 + tB95 " %   a*B05]V5 + [B97 ' B9D   Q*B07]E7 " G 

Following through a derivation similar to that done in  subsection 2.4.1 
we get Equation (10).    Equation (11)  is the original SCEPTRE derivation. 

^(n+l) \      (G55 

'2(n+l) ) - i [B25-B2D a "B05] 

'9(n+l) [B95-B9D  Q   B05l 

-B J  .„T -1 
,T   .„T 

25G22      [B95+B05 Q]G99 )     | tB95+B05Q]Q9+B85J8) 

I 0 I     \[-B27+B2DQ*B07]E7i 

[-B97+B9DQB07lE7 

(10) 
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T 
■B25G22 

I 

0 

T       T 
1  95    05    J  99 

0 

I 

[B95+B05alVB85J8 

( 

\ -B27E7 

V -B97E7 

(11) 

Comparison of Equations (10) and (11) , shows that terms get added to the 
(2,1) and (3,1) terms of the Jacobian and to the forcing function column 
vector of equation (10), while the terms originally involving a are deleted. 

Therefore, when an adjoint run is requested, and secondary sources are 
present in the given circuit, the iteration given by Equation ;i0) is used 
instead of the one given by (11). 
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